Qing Wu, Qinru Qiu, R. Linderman, Daniel J. Burns, Michael J. Moore, D. Fitzgerald
{"title":"Architectural Design and Complexity Analysis of Large-Scale Cortical Simulation on a Hybrid Computing Platform","authors":"Qing Wu, Qinru Qiu, R. Linderman, Daniel J. Burns, Michael J. Moore, D. Fitzgerald","doi":"10.1109/CISDA.2007.368154","DOIUrl":null,"url":null,"abstract":"Research and development in modeling and simulation of human cognizance functions requires a high-performance computing platform for manipulating large-scale mathematical models. Traditional computing architectures cannot fulfill the attendant needs in terms of arithmetic computation and communication bandwidth. In this work, we propose a novel hybrid computing architecture for the simulation and evaluation of large-scale associative neural memory models. The proposed architecture achieves very high computing and communication performances by combining the technologies of hardware-accelerated computing, parallel distributed data operation and the publish/subscribe protocol. Analysis has been done on the computation and data bandwidth demands for implementing a large-scale brain-state-in-a-box (BSB) model. Compared to the traditional computing architecture, the proposed architecture can achieve at least 100X speedup.","PeriodicalId":403553,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2007.368154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Research and development in modeling and simulation of human cognizance functions requires a high-performance computing platform for manipulating large-scale mathematical models. Traditional computing architectures cannot fulfill the attendant needs in terms of arithmetic computation and communication bandwidth. In this work, we propose a novel hybrid computing architecture for the simulation and evaluation of large-scale associative neural memory models. The proposed architecture achieves very high computing and communication performances by combining the technologies of hardware-accelerated computing, parallel distributed data operation and the publish/subscribe protocol. Analysis has been done on the computation and data bandwidth demands for implementing a large-scale brain-state-in-a-box (BSB) model. Compared to the traditional computing architecture, the proposed architecture can achieve at least 100X speedup.