An efficient algorithm for computing the triple correlation

Elias Nemer, R. Goubran, S. Mahmoud
{"title":"An efficient algorithm for computing the triple correlation","authors":"Elias Nemer, R. Goubran, S. Mahmoud","doi":"10.1109/CCECE.1997.614828","DOIUrl":null,"url":null,"abstract":"The triple correlation C[k,m] is of the class of higher-order statistics and is used in a number of signal processing applications. Its computational requirements are of the order of K.M.N (the maximum lags and the number of data points respectively) and in any practical situation this amounts to a significant burden. The algorithm we present in this paper exploits the redundancy of the product terms to derive a factored expression for C[k,m] that results in a reduced number of multiplications (and overall operations). The savings depend on the relationships between the 2 lags and the number of data samples. Details for each case are provided and numerical examples illustrate the algorithm's effectiveness.","PeriodicalId":359446,"journal":{"name":"CCECE '97. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery. Conference Proceedings","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCECE '97. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery. Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1997.614828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The triple correlation C[k,m] is of the class of higher-order statistics and is used in a number of signal processing applications. Its computational requirements are of the order of K.M.N (the maximum lags and the number of data points respectively) and in any practical situation this amounts to a significant burden. The algorithm we present in this paper exploits the redundancy of the product terms to derive a factored expression for C[k,m] that results in a reduced number of multiplications (and overall operations). The savings depend on the relationships between the 2 lags and the number of data samples. Details for each case are provided and numerical examples illustrate the algorithm's effectiveness.
一种计算三重相关的有效算法
三重相关C[k,m]是一类高阶统计量,在许多信号处理应用中使用。它的计算需求是km.n的数量级(最大滞后和数据点的数量分别),在任何实际情况下,这都是一个很大的负担。我们在本文中提出的算法利用乘积项的冗余来导出C[k,m]的因式表达式,从而减少乘法次数(和整体操作)。节省的时间取决于两个滞后和数据样本数量之间的关系。给出了每种情况的详细情况,并通过数值算例说明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信