Design and implementation of a robot audition system for automatic speech recognition of simultaneous speech

S. Yamamoto, K. Nakadai, Mikio Nakano, H. Tsujino, J. Valin, Kazunori Komatani, T. Ogata, HIroshi G. Okuno
{"title":"Design and implementation of a robot audition system for automatic speech recognition of simultaneous speech","authors":"S. Yamamoto, K. Nakadai, Mikio Nakano, H. Tsujino, J. Valin, Kazunori Komatani, T. Ogata, HIroshi G. Okuno","doi":"10.1109/ASRU.2007.4430093","DOIUrl":null,"url":null,"abstract":"This paper addresses robot audition that can cope with speech that has a low signal-to-noise ratio (SNR) in real time by using robot-embedded microphones. To cope with such a noise, we exploited two key ideas; Preprocessing consisting of sound source localization and separation with a microphone array, and system integration based on missing feature theory (MFT). Preprocessing improves the SNR of a target sound signal using geometric source separation with multichannel post-filter. MFT uses only reliable acoustic features in speech recognition and masks unreliable parts caused by errors in preprocessing. MFT thus provides smooth integration between preprocessing and automatic speech recognition. A real-time robot audition system based on these two key ideas is constructed for Honda ASIMO and Humanoid SIG2 with 8-ch microphone arrays. The paper also reports the improvement of ASR performance by using two and three simultaneous speech signals.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This paper addresses robot audition that can cope with speech that has a low signal-to-noise ratio (SNR) in real time by using robot-embedded microphones. To cope with such a noise, we exploited two key ideas; Preprocessing consisting of sound source localization and separation with a microphone array, and system integration based on missing feature theory (MFT). Preprocessing improves the SNR of a target sound signal using geometric source separation with multichannel post-filter. MFT uses only reliable acoustic features in speech recognition and masks unreliable parts caused by errors in preprocessing. MFT thus provides smooth integration between preprocessing and automatic speech recognition. A real-time robot audition system based on these two key ideas is constructed for Honda ASIMO and Humanoid SIG2 with 8-ch microphone arrays. The paper also reports the improvement of ASR performance by using two and three simultaneous speech signals.
一种用于同步语音自动识别的机器人试听系统的设计与实现
本文研究了利用嵌入式机器人麦克风对低信噪比语音进行实时监听的问题。为了应对这样的噪音,我们利用了两个关键的想法;预处理包括声源定位和麦克风阵列分离,以及基于缺失特征理论(MFT)的系统集成。预处理利用几何源分离和多通道后置滤波器提高目标声音信号的信噪比。MFT在语音识别中只使用可靠的声学特征,而忽略了预处理错误导致的不可靠部分。因此,MFT提供了预处理和自动语音识别之间的平滑集成。基于这两个关键思想,构建了一个基于本田ASIMO和人形SIG2的8-ch麦克风阵列的实时机器人试听系统。本文还报道了使用两个和三个同步语音信号对ASR性能的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信