PELABELAN SELIMUT AJAIB SUPER PADA GRAF LINTASAN

N. Farida, I. W. Sudarsana, Resnawati Resnawati
{"title":"PELABELAN SELIMUT AJAIB SUPER PADA GRAF LINTASAN","authors":"N. Farida, I. W. Sudarsana, Resnawati Resnawati","doi":"10.22487/2540766X.2018.V15.I2.11347","DOIUrl":null,"url":null,"abstract":"Let 𝐺 = (𝑉, 𝐸) be a simple graph. An edge covering of 𝐺 is a family of subgraphs 𝐻1 , … , 𝐻𝑘 such that each edge of 𝐸(𝐺) belongs to at least one of the subgraphs 𝐻𝑖 , 1 ≤ 𝑖 ≤ 𝑘. If every 𝐻𝑖 is isomorphic to a given graph 𝐻, then the graph 𝐺 admits an 𝐻 − covering. Let 𝐺 be a containing a covering 𝐻, and 𝑓 the bijectif function 𝑓: (𝑉 ∪ 𝐸) → {1,2,3, … , |𝑉| + |𝐸|} is said an 𝐻 −magic labeling of 𝐺 if for every subgraph 𝐻 ′ = (𝑉 ′ ,𝐸 ′ ) of 𝐺 isomorphic to 𝐻, is obtained that ∑ 𝑓(𝑉) + ∑ 𝑓(𝐸) 𝑒∈𝐸(𝐻′ 𝑣∈𝑉(𝐻 ) ′ ) is constant. 𝐺 is said to be 𝐻 −super magic if 𝑓(𝑉) = {1, 2, 3, … , |𝑉|}. In this case, the graph 𝐺 which can be labeled with 𝐻-magic is called the covering graph 𝐻 −magic. The sum of all vertex labels and all edge labels on the covering 𝐻 − super magic then obtained constant magic is denoted by ∑ 𝑓(𝐻). The duplication graph 2 of graph 𝐷2 (𝐺) is a graph obtained from two copies of graph 𝐺, called 𝐺 and 𝐺 ′ , with connecting each respectively vertex 𝑣 in 𝐺 with the vertexs immediate neighboring of 𝑣 ′ in 𝐺 ′ . The purpose of this study is to obtain a covering super magic labeling for of 𝐷2 (𝑃𝑚) on (𝐷2 (𝑃𝑛 )) for 𝑛 ≥ 4 and 3 ≤ 𝑚 ≤ 𝑛 − 1. In this paper, we have showed that duplication path graph (𝐷2 (𝑃𝑛 )) has 𝐷2 (𝑃𝑚) covering super magic labeling for 𝑛 ≥ 4 and 3 ≤ 𝑚 ≤ 𝑛 − 1 with constant magic for all covering is ∑ 𝑓(𝐷2 (𝑃𝑚) (𝑠) ) = ∑ 𝑓(𝐷2 (𝑃𝑚) (𝑠+1) )","PeriodicalId":259622,"journal":{"name":"JURNAL ILMIAH MATEMATIKA DAN TERAPAN","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL ILMIAH MATEMATIKA DAN TERAPAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22487/2540766X.2018.V15.I2.11347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let 𝐺 = (𝑉, 𝐸) be a simple graph. An edge covering of 𝐺 is a family of subgraphs 𝐻1 , … , 𝐻𝑘 such that each edge of 𝐸(𝐺) belongs to at least one of the subgraphs 𝐻𝑖 , 1 ≤ 𝑖 ≤ 𝑘. If every 𝐻𝑖 is isomorphic to a given graph 𝐻, then the graph 𝐺 admits an 𝐻 − covering. Let 𝐺 be a containing a covering 𝐻, and 𝑓 the bijectif function 𝑓: (𝑉 ∪ 𝐸) → {1,2,3, … , |𝑉| + |𝐸|} is said an 𝐻 −magic labeling of 𝐺 if for every subgraph 𝐻 ′ = (𝑉 ′ ,𝐸 ′ ) of 𝐺 isomorphic to 𝐻, is obtained that ∑ 𝑓(𝑉) + ∑ 𝑓(𝐸) 𝑒∈𝐸(𝐻′ 𝑣∈𝑉(𝐻 ) ′ ) is constant. 𝐺 is said to be 𝐻 −super magic if 𝑓(𝑉) = {1, 2, 3, … , |𝑉|}. In this case, the graph 𝐺 which can be labeled with 𝐻-magic is called the covering graph 𝐻 −magic. The sum of all vertex labels and all edge labels on the covering 𝐻 − super magic then obtained constant magic is denoted by ∑ 𝑓(𝐻). The duplication graph 2 of graph 𝐷2 (𝐺) is a graph obtained from two copies of graph 𝐺, called 𝐺 and 𝐺 ′ , with connecting each respectively vertex 𝑣 in 𝐺 with the vertexs immediate neighboring of 𝑣 ′ in 𝐺 ′ . The purpose of this study is to obtain a covering super magic labeling for of 𝐷2 (𝑃𝑚) on (𝐷2 (𝑃𝑛 )) for 𝑛 ≥ 4 and 3 ≤ 𝑚 ≤ 𝑛 − 1. In this paper, we have showed that duplication path graph (𝐷2 (𝑃𝑛 )) has 𝐷2 (𝑃𝑚) covering super magic labeling for 𝑛 ≥ 4 and 3 ≤ 𝑚 ≤ 𝑛 − 1 with constant magic for all covering is ∑ 𝑓(𝐷2 (𝑃𝑚) (𝑠) ) = ∑ 𝑓(𝐷2 (𝑃𝑚) (𝑠+1) )
设𝐺= (s, s)为简单图。一个𝐺的边缘覆盖是一组子图𝐻1,…,𝐻𝑘,使得(𝐺)的每条边都至少属于其中一个子图𝐻, 1≤≤𝑘。如果每个𝐻序列与给定图𝐻同构,则图𝐺允许一个𝐻−覆盖。让𝐺包含覆盖𝐻,𝑓bijectif函数𝑓:(𝑉∪𝐸)→{1,2,3,…,|𝑉| + |𝐸|}是一个𝐻−魔法标记𝐺如果每个子图𝐻”=(𝑉',𝐸')的𝐺𝐻同构,是获得∑𝑓(𝑉)+∑𝑓(𝐸)𝑒∈𝐸(𝐻”𝑣∈𝑉(𝐻)”)是恒定的。据说𝐺𝐻−超级魔法如果𝑓(𝑉)={1,2,3,…,|𝑉|}。在这种情况下,可以用𝐻-magic标记的图𝐺称为覆盖图𝐻-magic。覆盖层𝐻−supermagic上的所有顶点标记和所有边标记之和,然后得到常数magic,用∑𝑓(𝐻)表示。重复图2图𝐷2(𝐺)是一个图形获得两份图𝐺,叫做𝐺𝐺’,分别与连接每一个顶点与顶点在𝐺𝑣𝑣直接相邻的𝐺”。本研究的目的是为𝑛≥4和3≤𝑚≤𝑛−1,获得𝐷2 (𝑚)对(𝐷2 (𝑛))的覆盖超级魔术标签。在本文中,我们表明,重复路径图(𝐷2(𝑃𝑛))已经𝐷2(𝑃𝑚)覆盖超级魔法标记𝑛≥4和3≤𝑚≤𝑛−1常神奇的所有覆盖∑𝑓(𝐷2(𝑃𝑚)(𝑠))=∑𝑓(𝐷2(𝑃𝑚)(𝑠+ 1))
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信