AN IMPROVED PARALLEL ALGORITHM FOR A GEOMETRIC MATCHING PROBLEM WITH APPLICATION TO TRAPEZOID GRAPHS

M. H. Alsuwaiyel
{"title":"AN IMPROVED PARALLEL ALGORITHM FOR A GEOMETRIC MATCHING PROBLEM WITH APPLICATION TO TRAPEZOID GRAPHS","authors":"M. H. Alsuwaiyel","doi":"10.1080/10637190208941437","DOIUrl":null,"url":null,"abstract":"Let B be a set of n b blue points and R a set of nrred points in the plane, where nb + nr = n. A blue point b and a red point r can be matched if r dominates b, that is, if x(b) ≤ x(r) and y( b) ≤ y(r). We consider the problem of finding a maximum cardinality matching between the points in B and the points in R. We give an adaptive parallel algorithm to solve this problem that runs in O(log2n) time using the CREW PRAM with O(n2+ε/log n) processors for some ε,0 < ε < 1.It follows that finding the minimum number of colors to color a trapezoid graph can be solved within these resource bounds","PeriodicalId":406098,"journal":{"name":"Parallel Algorithms and Applications","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10637190208941437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let B be a set of n b blue points and R a set of nrred points in the plane, where nb + nr = n. A blue point b and a red point r can be matched if r dominates b, that is, if x(b) ≤ x(r) and y( b) ≤ y(r). We consider the problem of finding a maximum cardinality matching between the points in B and the points in R. We give an adaptive parallel algorithm to solve this problem that runs in O(log2n) time using the CREW PRAM with O(n2+ε/log n) processors for some ε,0 < ε < 1.It follows that finding the minimum number of colors to color a trapezoid graph can be solved within these resource bounds
一种求解几何匹配问题的改进并行算法及其在梯形图中的应用
设B为平面内n个蓝点的集合,R为n个红点的集合,其中nb + nr = n。如果R优于B,即x(B)≤x(R)且y(B)≤y(R),则蓝点B和红点R可以匹配。我们考虑了寻找B中点与r中点之间最大基数匹配的问题,并给出了一个自适应并行算法来解决这个问题,该算法使用带有O(n2+ε/log n)处理器的CREW PRAM,对于某些ε,0 < ε < 1,运行时间为O(log2n)。由此可见,在这些资源范围内,可以找到为梯形图上色的最小颜色数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信