An approach on convergent section design for open water channels

Lerchai Kirasumutranon, D. Phaoharuhansa, S. Saimek
{"title":"An approach on convergent section design for open water channels","authors":"Lerchai Kirasumutranon, D. Phaoharuhansa, S. Saimek","doi":"10.1109/ICMSC.2017.7959453","DOIUrl":null,"url":null,"abstract":"Normally, the open water channel is used to analyze the fluid dynamics when fluid flow through the model. The design convergent section approach is consider in order to determine inlet water velocity conditions and the variation of the curve profile. The convergent section is designed using third, fifth and seventh order polynomial equation, respectively. The result to shows that the optimization of the condition was affected uniform water velocity profile in test section. The third order polynomial wall generates maximum water flow speed about 0.25 m/s at 0.05 m/s of inlet water velocity. The fifth order polynomial wall of convergent section was generated maximum water flow speed about 0.31 m/s at 0.05 m/s of inlet water velocity. The seventh order polynomial generates maximum water flow speed about 0.61 m/s at 0.02 m/s of inlet water velocity. The increasing of degree order polynomials were increased water flow speed in test section. The fifth order polynomial wall of convergent section is velocity profile uniform, when Compare with third and seventh order polynomial","PeriodicalId":356055,"journal":{"name":"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSC.2017.7959453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Normally, the open water channel is used to analyze the fluid dynamics when fluid flow through the model. The design convergent section approach is consider in order to determine inlet water velocity conditions and the variation of the curve profile. The convergent section is designed using third, fifth and seventh order polynomial equation, respectively. The result to shows that the optimization of the condition was affected uniform water velocity profile in test section. The third order polynomial wall generates maximum water flow speed about 0.25 m/s at 0.05 m/s of inlet water velocity. The fifth order polynomial wall of convergent section was generated maximum water flow speed about 0.31 m/s at 0.05 m/s of inlet water velocity. The seventh order polynomial generates maximum water flow speed about 0.61 m/s at 0.02 m/s of inlet water velocity. The increasing of degree order polynomials were increased water flow speed in test section. The fifth order polynomial wall of convergent section is velocity profile uniform, when Compare with third and seventh order polynomial
明渠收敛断面设计方法研究
通常情况下,使用开阔的水道来分析流体流过模型时的流体动力学。为了确定进水流速条件和曲线曲线的变化,考虑了设计收敛截面法。分别用三阶、五阶和七阶多项式方程设计了收敛段。结果表明,条件的优化影响了试验段均匀的水速分布。三阶多项式壁面在进口水速为0.05 m/s时产生的最大水流速度约为0.25 m/s。在进口水速为0.05 m/s时,收敛截面的五阶多项式壁面产生的最大水流速度约为0.31 m/s。在进口水速为0.02 m/s时,七阶多项式得到的最大水流速度约为0.61 m/s。阶次多项式的增加增加了试验段的水流速度。与三阶和七阶多项式相比,收敛段的五阶多项式壁面速度分布均匀
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信