A Novel Temporal Convolutional Network for NLOS Identification of UWB Signal

Peiqin Li, Yuhao Yan, Yifan Tan, Haowen Wang
{"title":"A Novel Temporal Convolutional Network for NLOS Identification of UWB Signal","authors":"Peiqin Li, Yuhao Yan, Yifan Tan, Haowen Wang","doi":"10.1109/IFEEA57288.2022.10037825","DOIUrl":null,"url":null,"abstract":"The accurate identification of Non-line of Sight (NLOS) propagation is an important premise to ensure the positioning accuracy in UWB indoor positioning system. In this paper, a network which takes the channel impulse response (CIR) as the input and combines the temporal convolutional network (TCN) and attention mechanism is proposed to identify the NLOS propagation. Experiments on the open source dataset show that the identification accuracy of the network reaches 89.80%, which is better than the existing mainstream long short-term memory neural network. Also, the accuracy and computational amount of the network can be balanced by adjustment of CIR length according to the needs in practical application, indicating that the network has a good application prospect.","PeriodicalId":304779,"journal":{"name":"2022 9th International Forum on Electrical Engineering and Automation (IFEEA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Forum on Electrical Engineering and Automation (IFEEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFEEA57288.2022.10037825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate identification of Non-line of Sight (NLOS) propagation is an important premise to ensure the positioning accuracy in UWB indoor positioning system. In this paper, a network which takes the channel impulse response (CIR) as the input and combines the temporal convolutional network (TCN) and attention mechanism is proposed to identify the NLOS propagation. Experiments on the open source dataset show that the identification accuracy of the network reaches 89.80%, which is better than the existing mainstream long short-term memory neural network. Also, the accuracy and computational amount of the network can be balanced by adjustment of CIR length according to the needs in practical application, indicating that the network has a good application prospect.
一种用于超宽带信号NLOS识别的新型时间卷积网络
在超宽带室内定位系统中,准确识别非瞄准线传播是保证定位精度的重要前提。本文提出了一种以信道脉冲响应(CIR)为输入,结合时间卷积网络(TCN)和注意机制的网络来识别NLOS传播。在开源数据集上的实验表明,该网络的识别准确率达到89.80%,优于现有主流的长短期记忆神经网络。在实际应用中,可以根据需要调整CIR长度来平衡网络的精度和计算量,表明网络具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信