{"title":"Just a Few Seeds More: Value of Network Information for Diffusion","authors":"M. Akbarpour, Suraj Malladi, A. Saberi","doi":"10.2139/ssrn.3062830","DOIUrl":null,"url":null,"abstract":"Identifying the optimal set of individuals to first receive information ('seeds') in a social network is a widely-studied question in many settings, such as the diffusion of information, microfinance programs, and new technologies. Numerous studies have proposed various network-centrality based heuristics to choose seeds in a way that is likely to boost diffusion. Here we show that, for some frequently studied diffusion processes, randomly seeding s plus x individuals can prompt a larger cascade than optimally targeting the best s individuals, for a small x. We prove our results for large classes of random networks, but also show that they hold in simulations over several real-world networks. This suggests that the returns to collecting and analyzing network information to identify the optimal seeds may not be economically significant. Given these findings, practitioners interested in communicating a message to a large number of people may wish to compare the cost of network-based targeting to that of slightly expanding initial outreach.","PeriodicalId":159122,"journal":{"name":"ORG: Adoption","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ORG: Adoption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3062830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51
Abstract
Identifying the optimal set of individuals to first receive information ('seeds') in a social network is a widely-studied question in many settings, such as the diffusion of information, microfinance programs, and new technologies. Numerous studies have proposed various network-centrality based heuristics to choose seeds in a way that is likely to boost diffusion. Here we show that, for some frequently studied diffusion processes, randomly seeding s plus x individuals can prompt a larger cascade than optimally targeting the best s individuals, for a small x. We prove our results for large classes of random networks, but also show that they hold in simulations over several real-world networks. This suggests that the returns to collecting and analyzing network information to identify the optimal seeds may not be economically significant. Given these findings, practitioners interested in communicating a message to a large number of people may wish to compare the cost of network-based targeting to that of slightly expanding initial outreach.