Overview of the Mowjaz Multi-Topic Labelling Task

M. Al-Ayyoub, Haitham Seelawi, M. Zaghlol, Hussein T. Al-Natsheh, Samer Suileman, A. Fadel, Riham Badawi, Ahmed Morsy, Ibraheem Tuffaha, M. Aljarrah
{"title":"Overview of the Mowjaz Multi-Topic Labelling Task","authors":"M. Al-Ayyoub, Haitham Seelawi, M. Zaghlol, Hussein T. Al-Natsheh, Samer Suileman, A. Fadel, Riham Badawi, Ahmed Morsy, Ibraheem Tuffaha, M. Aljarrah","doi":"10.1109/ICICS52457.2021.9464604","DOIUrl":null,"url":null,"abstract":"Multilabel text classification is an important task in Natural Language Processing (NLP). One use case of such a task is in categorizing news articles, where each article may belong to one or more classes. In this work, we present the ICICS2021 Mowjaz Multi-Topic Labelling Task. Given a piece of news, systems participating in this task are expected to select its topic(s). The systems are evaluated based on the F1 score measure. In total, 46 teams registered on the task’s CodaLab page. Out of them, 28 teams submitted 309 runs. The results are surprisingly high. Moreover, they are very close to each other with all teams having systems achieving F1 scores ranging between 0.7965 and 0.8567. Most of these systems used deep learning models, such as Recurrent Neural Networks (RNN), coupled with pretrained word embeddings such as BERT-based models. Few of them experimented with traditional machine learning models such as Support Vector Machine (SVM) and Naive Bayes (NB).","PeriodicalId":421803,"journal":{"name":"2021 12th International Conference on Information and Communication Systems (ICICS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS52457.2021.9464604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Multilabel text classification is an important task in Natural Language Processing (NLP). One use case of such a task is in categorizing news articles, where each article may belong to one or more classes. In this work, we present the ICICS2021 Mowjaz Multi-Topic Labelling Task. Given a piece of news, systems participating in this task are expected to select its topic(s). The systems are evaluated based on the F1 score measure. In total, 46 teams registered on the task’s CodaLab page. Out of them, 28 teams submitted 309 runs. The results are surprisingly high. Moreover, they are very close to each other with all teams having systems achieving F1 scores ranging between 0.7965 and 0.8567. Most of these systems used deep learning models, such as Recurrent Neural Networks (RNN), coupled with pretrained word embeddings such as BERT-based models. Few of them experimented with traditional machine learning models such as Support Vector Machine (SVM) and Naive Bayes (NB).
Mowjaz多主题标签任务概述
多标签文本分类是自然语言处理(NLP)中的一个重要任务。这种任务的一个用例是对新闻文章进行分类,其中每篇文章可能属于一个或多个类。在这项工作中,我们提出了ICICS2021 Mowjaz多主题标签任务。给定一条新闻,参与此任务的系统应该选择其主题。这些系统是根据F1分数来评估的。总共有46个团队在该任务的CodaLab页面上注册。其中,28支队伍投了309分。结果是惊人的高。此外,它们彼此非常接近,所有车队的系统都达到了0.7965到0.8567之间的F1分数。这些系统大多使用深度学习模型,如循环神经网络(RNN),再加上预训练的词嵌入,如基于bert的模型。他们很少尝试传统的机器学习模型,如支持向量机(SVM)和朴素贝叶斯(NB)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信