Anomaly intrusion detection using one class SVM

Yanxin Wang, Johnny Wong, A. Miner
{"title":"Anomaly intrusion detection using one class SVM","authors":"Yanxin Wang, Johnny Wong, A. Miner","doi":"10.1109/IAW.2004.1437839","DOIUrl":null,"url":null,"abstract":"Kernel methods are widely used in statistical learning for many fields, such as protein classification and image processing. We recently extend kernel methods to intrusion detection domain by introducing a new family of kernels suitable for intrusion detection. These kernels, combined with an unsupervised learning method - one-class support vector machine, are used for anomaly detection. Our experiments show that the new anomaly detection methods are able to achieve better accuracy rates than the conventional anomaly detectors.","PeriodicalId":141403,"journal":{"name":"Proceedings from the Fifth Annual IEEE SMC Information Assurance Workshop, 2004.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"148","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings from the Fifth Annual IEEE SMC Information Assurance Workshop, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAW.2004.1437839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 148

Abstract

Kernel methods are widely used in statistical learning for many fields, such as protein classification and image processing. We recently extend kernel methods to intrusion detection domain by introducing a new family of kernels suitable for intrusion detection. These kernels, combined with an unsupervised learning method - one-class support vector machine, are used for anomaly detection. Our experiments show that the new anomaly detection methods are able to achieve better accuracy rates than the conventional anomaly detectors.
一类支持向量机的异常入侵检测
核方法广泛应用于蛋白质分类、图像处理等统计学习领域。我们最近通过引入一种新的适合于入侵检测的核方法,将核方法扩展到入侵检测领域。这些核与一种无监督学习方法——单类支持向量机相结合,用于异常检测。实验表明,新的异常检测方法比传统的异常检测方法具有更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信