Local Binary Patterns for Gender Classification

Faycel Abbas, A. Gattal, Mohamed Ridda Laouar, K. Saoudi, Ismail Hadjadj
{"title":"Local Binary Patterns for Gender Classification","authors":"Faycel Abbas, A. Gattal, Mohamed Ridda Laouar, K. Saoudi, Ismail Hadjadj","doi":"10.1145/3330089.3330123","DOIUrl":null,"url":null,"abstract":"Several approaches for gender of handwriting are proposed an appearance feature-based approach. In this paper we present a comparative study to evaluate effectiveness of different Local Binary Patterns methodologies in characterizing gender from handwriting. We investigate different local binary patterns (LBP) parameters with/without preprocessing step based on low-pass filtering as features to represent handwriting images. Features extracted from male and female writings are used to train an SVM. The system is evaluated on the standard QUWI database depending competitions of ICFHR 2016 of handwriting images and realizes promising classification rates.","PeriodicalId":251275,"journal":{"name":"Proceedings of the 7th International Conference on Software Engineering and New Technologies","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Software Engineering and New Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3330089.3330123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Several approaches for gender of handwriting are proposed an appearance feature-based approach. In this paper we present a comparative study to evaluate effectiveness of different Local Binary Patterns methodologies in characterizing gender from handwriting. We investigate different local binary patterns (LBP) parameters with/without preprocessing step based on low-pass filtering as features to represent handwriting images. Features extracted from male and female writings are used to train an SVM. The system is evaluated on the standard QUWI database depending competitions of ICFHR 2016 of handwriting images and realizes promising classification rates.
性别分类的局部二元模式
提出了几种识别笔迹性别的方法,其中一种基于外观特征的方法。在本文中,我们提出了一项比较研究,以评估不同的局部二元模式方法在笔迹性别特征方面的有效性。我们研究了不同的局部二值模式(LBP)参数,以低通滤波为特征来表示手写图像。从男性和女性写作中提取的特征用于训练支持向量机。基于ICFHR 2016手写体图像的竞赛,在标准的QUWI数据库上对系统进行了评估,并实现了良好的分类率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信