P300 Feature Extraction Based on Parametric Model and FastICA Algorithm

Qiao Xiaoyan, Li Douzhe, Dong Youer
{"title":"P300 Feature Extraction Based on Parametric Model and FastICA Algorithm","authors":"Qiao Xiaoyan, Li Douzhe, Dong Youer","doi":"10.1109/ICNC.2009.160","DOIUrl":null,"url":null,"abstract":"A method based on AR model and Fast ICA algorithm for P300 feature extracting is presented. In the study, the visual evoked signal is obtained via the alternate pictures. Then, principal component analysis (PCA) is used for reducing the dimension of EEG signal, independent component analysis (ICA) is used for removing EOG artifact. And AR model is constructed for filtrating the spontaneous EEG. Finally, a coherence average is used to extract P300 in real-time. The results have shown that this method can perform effectively to extract P300 feature independently to any prior information and avoid the subject’s visual fatigue caused by long time visual evoking. It can be applied on online BCI system.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A method based on AR model and Fast ICA algorithm for P300 feature extracting is presented. In the study, the visual evoked signal is obtained via the alternate pictures. Then, principal component analysis (PCA) is used for reducing the dimension of EEG signal, independent component analysis (ICA) is used for removing EOG artifact. And AR model is constructed for filtrating the spontaneous EEG. Finally, a coherence average is used to extract P300 in real-time. The results have shown that this method can perform effectively to extract P300 feature independently to any prior information and avoid the subject’s visual fatigue caused by long time visual evoking. It can be applied on online BCI system.
基于参数化模型和FastICA算法的P300特征提取
提出了一种基于AR模型和快速ICA算法的P300特征提取方法。在本研究中,视觉诱发信号是通过交替图像获得的。然后,利用主成分分析(PCA)对脑电信号进行降维处理,利用独立分量分析(ICA)去除脑电信号伪影。并建立了AR模型对自发脑电信号进行过滤。最后,利用相干平均实时提取P300。结果表明,该方法能够有效地独立于任何先验信息提取P300特征,避免受试者因长时间视觉唤起而产生的视觉疲劳。可应用于在线BCI系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信