A Second Order Weak Approximation of SDEs Using Markov Chain Without Levy Area Simulation

T. Yamada, Kenta Yamamoto
{"title":"A Second Order Weak Approximation of SDEs Using Markov Chain Without Levy Area Simulation","authors":"T. Yamada, Kenta Yamamoto","doi":"10.2139/ssrn.3257365","DOIUrl":null,"url":null,"abstract":"This paper proposes a new Markov chain approach to second order weak approximation of stochastic differential equations driven by d-dimensional Brownian motion. The scheme is explicitly constructed by polynomials of Brownian motions up to second order and any discrete moment matched random variables or Levy area simulation method are not used. The number of required random variables is still d in one-step simulation on the implementation of the scheme. In the Markov chain, a correction term with Lie bracket of vector fields associated with SDEs appears as the cost of not using moment matched random variables.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3257365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new Markov chain approach to second order weak approximation of stochastic differential equations driven by d-dimensional Brownian motion. The scheme is explicitly constructed by polynomials of Brownian motions up to second order and any discrete moment matched random variables or Levy area simulation method are not used. The number of required random variables is still d in one-step simulation on the implementation of the scheme. In the Markov chain, a correction term with Lie bracket of vector fields associated with SDEs appears as the cost of not using moment matched random variables.
无列维面积模拟的马尔可夫链二阶弱逼近
本文提出了一种新的马尔可夫链逼近d维布朗运动驱动的随机微分方程二阶弱逼近的方法。该方案由二阶布朗运动的多项式显式构造,不使用任何离散矩匹配随机变量或Levy面积模拟方法。在方案实现的一步仿真中,所需随机变量的数量仍然是d。在马尔可夫链中,与SDEs相关的向量场带有李括号的修正项作为不使用矩匹配随机变量的代价出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信