{"title":"256-element density-tapered spiral matrices for ultrasound phased imaging","authors":"A. Ramalli, P. Tortoli","doi":"10.1109/ULTSYM.2014.0520","DOIUrl":null,"url":null,"abstract":"The increasing interest in 3D ultrasound imaging is pushing the development of 2D probes with a challenging number (N) of active elements. The most popular approach in order to contain N is the sparse array technique. Here the design of the array layout requires complex optimization algorithms, which are typically constrained by a few steering conditions. Ungridded extensions of the sparse array technique offer improved performance by adding a further degree of freedom in the optimization process. In this paper, it is proposed to design the layout of large circular arrays with limited N according to Fermat's spiral seeds with spatial density modulation. This deterministic, aperiodic and balanced positioning procedure aims at guaranteeing uniform performance over a wide range of steering angles. The capabilities of the method is demonstrated by simulation comparing the performance of spiral and dense arrays.","PeriodicalId":153901,"journal":{"name":"2014 IEEE International Ultrasonics Symposium","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2014.0520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The increasing interest in 3D ultrasound imaging is pushing the development of 2D probes with a challenging number (N) of active elements. The most popular approach in order to contain N is the sparse array technique. Here the design of the array layout requires complex optimization algorithms, which are typically constrained by a few steering conditions. Ungridded extensions of the sparse array technique offer improved performance by adding a further degree of freedom in the optimization process. In this paper, it is proposed to design the layout of large circular arrays with limited N according to Fermat's spiral seeds with spatial density modulation. This deterministic, aperiodic and balanced positioning procedure aims at guaranteeing uniform performance over a wide range of steering angles. The capabilities of the method is demonstrated by simulation comparing the performance of spiral and dense arrays.