Calibration Estimation Using Proposed Distance Function

A. S. Lata, D. Rao, M. G. M. Khan
{"title":"Calibration Estimation Using Proposed Distance Function","authors":"A. S. Lata, D. Rao, M. G. M. Khan","doi":"10.1109/APWCONCSE.2017.00037","DOIUrl":null,"url":null,"abstract":"Calibration estimation is a method of adjusting the original design weights in survey sampling to improve estimates. It uses calibrated weights that are determined to minimize a given distance measure to the original design weights while satisfying a set of constraints related to the auxiliary information. In this paper, a distance function is proposed. Using the proposed distance function, a calibration estimator of the population mean in stratified sampling is derived. The calibrated weights are determined by minimizing the proposed distance function subject to the constraint on the mean auxiliary information, using Lagrange Multiplier Technique. A numerical example is presented to illustrate the application and computational details of the proposed calibration estimator. A simulation study, based on a real population is also carried to investigate the efficiency of the proposed calibration estimator. The study reveals that the calibration estimator developed using the proposed distance function is more efficient than the estimators developed using the Chi-square distance.","PeriodicalId":215519,"journal":{"name":"2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWCONCSE.2017.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Calibration estimation is a method of adjusting the original design weights in survey sampling to improve estimates. It uses calibrated weights that are determined to minimize a given distance measure to the original design weights while satisfying a set of constraints related to the auxiliary information. In this paper, a distance function is proposed. Using the proposed distance function, a calibration estimator of the population mean in stratified sampling is derived. The calibrated weights are determined by minimizing the proposed distance function subject to the constraint on the mean auxiliary information, using Lagrange Multiplier Technique. A numerical example is presented to illustrate the application and computational details of the proposed calibration estimator. A simulation study, based on a real population is also carried to investigate the efficiency of the proposed calibration estimator. The study reveals that the calibration estimator developed using the proposed distance function is more efficient than the estimators developed using the Chi-square distance.
使用建议距离函数的校准估计
校正估计是一种在调查抽样中调整原始设计权重以改进估计的方法。它使用经过校准的权重,这些权重被确定为最小化给定的距离度量到原始设计权重,同时满足与辅助信息相关的一组约束。本文提出了一种距离函数。利用所提出的距离函数,导出了分层抽样中总体均值的校准估计量。在辅助信息均值约束下,利用拉格朗日乘子技术对距离函数进行最小化,从而确定标定后的权重。最后给出了一个数值例子来说明所提出的校正估计器的应用和计算细节。基于真实种群的仿真研究也验证了所提出的校正估计器的有效性。研究表明,使用所提出的距离函数开发的校准估计器比使用卡方距离开发的估计器更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信