Prostate Cancer Prognosis Using Multi-Layer Perceptron and Class Balancing Techniques

Surbhi Gupta, Manoj Kumar
{"title":"Prostate Cancer Prognosis Using Multi-Layer Perceptron and Class Balancing Techniques","authors":"Surbhi Gupta, Manoj Kumar","doi":"10.1145/3474124.3474125","DOIUrl":null,"url":null,"abstract":"Prostate malignancy is one of the most common malignancies. Early prediction of a cancer diagnosis can upsurge the endurance rate of cancer patients. The advancement of cancer research is boosted with the advent of artificial intelligence. Researchers have developed programmes to aid in cancer detection and prognosis due to the availability of open-source healthcare statistics. Machine Learning (ML) algorithms play a vital role in the field of cancer prognosis. The current study highlights the applications of neural networks to predict prostate cancer. We have accessed prostate cancer records from a publically accessible data repository (Kaggle). Current research work stresses the applications of neural learning approach for cancer prognosis and attaining more accurate prediction outcomes. The study also stresses on the impact of different balancing techniques on imbalanced data. The proposed method enhanced the accurateness from 72% on the imbalanced data to 97% on the oversampled dataset. This study aims to determine whether an artificial neural network (multilayer perceptron, MLP) can accurately predict the diagnosis of prostate cancer. In addition, the experimental results confirm the necessity of data balancing techniques in classification.","PeriodicalId":144611,"journal":{"name":"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474124.3474125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Prostate malignancy is one of the most common malignancies. Early prediction of a cancer diagnosis can upsurge the endurance rate of cancer patients. The advancement of cancer research is boosted with the advent of artificial intelligence. Researchers have developed programmes to aid in cancer detection and prognosis due to the availability of open-source healthcare statistics. Machine Learning (ML) algorithms play a vital role in the field of cancer prognosis. The current study highlights the applications of neural networks to predict prostate cancer. We have accessed prostate cancer records from a publically accessible data repository (Kaggle). Current research work stresses the applications of neural learning approach for cancer prognosis and attaining more accurate prediction outcomes. The study also stresses on the impact of different balancing techniques on imbalanced data. The proposed method enhanced the accurateness from 72% on the imbalanced data to 97% on the oversampled dataset. This study aims to determine whether an artificial neural network (multilayer perceptron, MLP) can accurately predict the diagnosis of prostate cancer. In addition, the experimental results confirm the necessity of data balancing techniques in classification.
基于多层感知器和类平衡技术的前列腺癌预后
前列腺恶性肿瘤是最常见的恶性肿瘤之一。癌症诊断的早期预测可以提高癌症患者的忍耐力。人工智能的出现促进了癌症研究的进步。由于开源医疗统计数据的可用性,研究人员已经开发了帮助癌症检测和预后的程序。机器学习(ML)算法在癌症预后领域发挥着至关重要的作用。目前的研究重点是神经网络在预测前列腺癌方面的应用。我们从一个可公开访问的数据存储库(Kaggle)访问了前列腺癌的记录。目前的研究工作强调神经学习方法在癌症预后中的应用,以获得更准确的预测结果。研究还强调了不同的平衡技术对不平衡数据的影响。该方法将不平衡数据的准确率从72%提高到过采样数据的97%。本研究旨在确定人工神经网络(多层感知器,MLP)能否准确预测前列腺癌的诊断。此外,实验结果证实了数据平衡技术在分类中的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信