PMU placement for optimal three-phase state estimation performance

Yue Yang, Sumit Roy
{"title":"PMU placement for optimal three-phase state estimation performance","authors":"Yue Yang, Sumit Roy","doi":"10.1109/SmartGridComm.2013.6687981","DOIUrl":null,"url":null,"abstract":"The future `smart' grid will see increasing deployments of intelligent electronic devices (IED), that sense the state variables of the grid at more locations than present. It is anticipated that sensory devices with Phasor Measurement Unit (PMU)-like capabilities will find deployment within the changing distribution sub-system, to provide greater operational efficiency. However, due to the current high cost of PMU installation, their deployment in the distribution network will continue to be selective for the foreseeable future. Much of the prior literature on PMU placement has focused on how to obtain full observability with minimal number of PMUs for a single-phase power network. Very little work exists for the placement problem for three-phase distribution grid. We further observe that there typically exist multiple minimal-PMU sets that achieve full network observability, affording additional degree of freedom to select an optimal choice among this set. We define the desired solution as the PMU placement that also achieves best overall state estimation performance. Accordingly, we derive the state estimator of all buses in a three-phase network and propose a) greedy algorithm and b) integer programming optimization method to determine the optimal solution. The comparative performance of these two methods is presented via evaluation of transmission and distribution test networks.","PeriodicalId":136434,"journal":{"name":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2013.6687981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The future `smart' grid will see increasing deployments of intelligent electronic devices (IED), that sense the state variables of the grid at more locations than present. It is anticipated that sensory devices with Phasor Measurement Unit (PMU)-like capabilities will find deployment within the changing distribution sub-system, to provide greater operational efficiency. However, due to the current high cost of PMU installation, their deployment in the distribution network will continue to be selective for the foreseeable future. Much of the prior literature on PMU placement has focused on how to obtain full observability with minimal number of PMUs for a single-phase power network. Very little work exists for the placement problem for three-phase distribution grid. We further observe that there typically exist multiple minimal-PMU sets that achieve full network observability, affording additional degree of freedom to select an optimal choice among this set. We define the desired solution as the PMU placement that also achieves best overall state estimation performance. Accordingly, we derive the state estimator of all buses in a three-phase network and propose a) greedy algorithm and b) integer programming optimization method to determine the optimal solution. The comparative performance of these two methods is presented via evaluation of transmission and distribution test networks.
PMU放置的最佳三相状态估计性能
未来的“智能”电网将越来越多地部署智能电子设备(IED),这些设备可以在比现在更多的位置感知电网的状态变量。预计具有相量测量单元(PMU)功能的传感设备将在不断变化的配电子系统中部署,以提供更高的操作效率。然而,由于目前PMU安装的高成本,在可预见的未来,它们在配电网中的部署将继续是选择性的。许多关于PMU放置的先前文献都集中在如何以最小数量的PMU获得单相电网的完全可观察性。三相配电网的布设问题研究很少。我们进一步观察到,通常存在多个实现完全网络可观察性的最小pmu集,这为在该集合中选择最优选择提供了额外的自由度。我们将期望的解决方案定义为PMU放置,它也实现了最佳的整体状态估计性能。据此,我们推导了三相网络中所有总线的状态估计量,并提出了a)贪心算法和b)整数规划优化方法来确定最优解。通过对输配电测试网的评估,比较了两种方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信