Intuitionistic fuzzy probability and convergence of intuitionistic fuzzy observables

K. Čunderlíková
{"title":"Intuitionistic fuzzy probability and convergence of intuitionistic fuzzy observables","authors":"K. Čunderlíková","doi":"10.7546/nifs.2022.28.4.381-396","DOIUrl":null,"url":null,"abstract":"The aim of this contribution is to define a convergence in distribution, a convergence in measure and an almost everywhere convergence with respect to an intuitionistic fuzzy probability. We prove a version of Central limit theorem, a version of Weak law of large numbers and a version of Strong law of large numbers for intuitionistic fuzzy observables with respect to the intuitionistic fuzzy probability. We study a connection between convergence of intuitionistic fuzzy observables with respect to the intuitionistic fuzzy probability and a convergence of random variables, too.","PeriodicalId":433687,"journal":{"name":"Notes on Intuitionistic Fuzzy Sets","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Intuitionistic Fuzzy Sets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nifs.2022.28.4.381-396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this contribution is to define a convergence in distribution, a convergence in measure and an almost everywhere convergence with respect to an intuitionistic fuzzy probability. We prove a version of Central limit theorem, a version of Weak law of large numbers and a version of Strong law of large numbers for intuitionistic fuzzy observables with respect to the intuitionistic fuzzy probability. We study a connection between convergence of intuitionistic fuzzy observables with respect to the intuitionistic fuzzy probability and a convergence of random variables, too.
直觉模糊观测值的直觉模糊概率与收敛性
这一贡献的目的是定义分布上的收敛,度量上的收敛和关于直觉模糊概率的几乎处处收敛。针对直觉模糊概率,证明了直觉模糊观测的一个中心极限定理、一个弱大数定律和一个强大数定律。我们还研究了直觉模糊观测值相对于直觉模糊概率的收敛性与随机变量的收敛性之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信