Single cluster PHD SLAM: Application to autonomous underwater vehicles using stereo vision

S. Nagappa, N. Palomeras, Chee Sing Lee, N. Gracias, Daniel E. Clark, J. Salvi
{"title":"Single cluster PHD SLAM: Application to autonomous underwater vehicles using stereo vision","authors":"S. Nagappa, N. Palomeras, Chee Sing Lee, N. Gracias, Daniel E. Clark, J. Salvi","doi":"10.1109/OCEANS-BERGEN.2013.6608107","DOIUrl":null,"url":null,"abstract":"This paper considers the application of feature-based simultaneous localisation and mapping (SLAM) using a random finite sets (RFS) framework for an autonomous underwater vehicle. SLAM allows for reduction in localisation error by tracking features which provide a fixed external reference. The SLAM problem is addressed here using a single-cluster probability hypothesis density (PHD) filter. The filter uses a particle approximation for the vehicle position with a conditional Gaussian mixture PHD for the feature map. Map features are selected as unique point features generated from a stereo camera on-board the vehicle. We demonstrate the improvement in localisation applying the algorithm to a dataset obtained in an indoor test tank.","PeriodicalId":224246,"journal":{"name":"2013 MTS/IEEE OCEANS - Bergen","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 MTS/IEEE OCEANS - Bergen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS-BERGEN.2013.6608107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper considers the application of feature-based simultaneous localisation and mapping (SLAM) using a random finite sets (RFS) framework for an autonomous underwater vehicle. SLAM allows for reduction in localisation error by tracking features which provide a fixed external reference. The SLAM problem is addressed here using a single-cluster probability hypothesis density (PHD) filter. The filter uses a particle approximation for the vehicle position with a conditional Gaussian mixture PHD for the feature map. Map features are selected as unique point features generated from a stereo camera on-board the vehicle. We demonstrate the improvement in localisation applying the algorithm to a dataset obtained in an indoor test tank.
单集群PHD SLAM:立体视觉在自主水下航行器中的应用
本文研究了基于随机有限集(RFS)框架的基于特征的同步定位与映射(SLAM)在自主水下航行器中的应用。SLAM允许通过跟踪提供固定外部参考的特征来减少定位误差。SLAM问题在这里使用单簇概率假设密度(PHD)过滤器来解决。该滤波器对车辆位置使用粒子近似,对特征映射使用条件高斯混合PHD。地图特征被选择为车载立体摄像机生成的唯一点特征。我们将该算法应用于室内测试槽中获得的数据集,展示了在定位方面的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信