Memory-based context-sensitive spelling correction at web scale

Andrew Carlson, Ian Fette
{"title":"Memory-based context-sensitive spelling correction at web scale","authors":"Andrew Carlson, Ian Fette","doi":"10.1109/ICMLA.2007.50","DOIUrl":null,"url":null,"abstract":"We study the problem of correcting spelling mistakes in text using memory-based learning techniques and a very large database of token n-gram occurrences in web text as training data. Our approach uses the context in which an error appears to select the most likely candidate from words which might have been intended in its place. Using a novel correction algorithm and a massive database of training data, we demonstrate higher accuracy on correcting real- word errors than previous work, and very high accuracy at a new task of ranking corrections to non-word errors given by a standard spelling correction package.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

We study the problem of correcting spelling mistakes in text using memory-based learning techniques and a very large database of token n-gram occurrences in web text as training data. Our approach uses the context in which an error appears to select the most likely candidate from words which might have been intended in its place. Using a novel correction algorithm and a massive database of training data, we demonstrate higher accuracy on correcting real- word errors than previous work, and very high accuracy at a new task of ranking corrections to non-word errors given by a standard spelling correction package.
基于记忆的上下文敏感拼写纠正在网络规模
我们使用基于记忆的学习技术和一个非常大的网络文本中n-gram出现的数据库作为训练数据来研究纠正文本中的拼写错误问题。我们的方法是在出现错误的情况下,从原本可能出现错误的单词中选择最有可能的候选词。使用一种新的纠错算法和一个庞大的训练数据数据库,我们证明了纠错的准确性比以前的工作更高,并且在一个标准拼写纠错包给出的对非单词错误的纠错排序的新任务中具有很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信