{"title":"Determining Potential Yeast Longevity Genes via PPI Networks and Microarray Data Clustering Analysis","authors":"Bernard Chen, Roshan Doolabh, Fusheng Tang","doi":"10.1109/ICMLA.2013.75","DOIUrl":null,"url":null,"abstract":"Identification of genes involved in lifespan extension is a pre-requisite for studying aging and age-dependent diseases. So far, very few genes have been identified that relate to longevity. The process of analyzing each single gene one at a time can be a very long and expensive process. It is known that approximately 10% of 6000 yeast genes are lifespan related genes, however, less than 100 genes are identified as longevity genes. The interconnection of multiple genes and the time-dependent protein-protein interactions make researchers use systems biology as a first tool to predict genes potentially involved in aging. In this study, we combined analyses of protein-protein interaction data and micro array data to predict longevity genes. A dataset of all 6000 yeast genes was utilized and a protein-protein interaction ratio was used to narrow the dataset. Next, a hierarchical clustering algorithm was created to group the resulting data. From these clusters, conclusion of 6 highly possible longevity genes was drawn based on the amount of longevity genes in each cluster. Based on our latest information, one of our predicted genes is identified as a longevity gene. Wet lab experiments are applied to our predicted genes for supporting the findings.","PeriodicalId":168867,"journal":{"name":"2013 12th International Conference on Machine Learning and Applications","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2013.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Identification of genes involved in lifespan extension is a pre-requisite for studying aging and age-dependent diseases. So far, very few genes have been identified that relate to longevity. The process of analyzing each single gene one at a time can be a very long and expensive process. It is known that approximately 10% of 6000 yeast genes are lifespan related genes, however, less than 100 genes are identified as longevity genes. The interconnection of multiple genes and the time-dependent protein-protein interactions make researchers use systems biology as a first tool to predict genes potentially involved in aging. In this study, we combined analyses of protein-protein interaction data and micro array data to predict longevity genes. A dataset of all 6000 yeast genes was utilized and a protein-protein interaction ratio was used to narrow the dataset. Next, a hierarchical clustering algorithm was created to group the resulting data. From these clusters, conclusion of 6 highly possible longevity genes was drawn based on the amount of longevity genes in each cluster. Based on our latest information, one of our predicted genes is identified as a longevity gene. Wet lab experiments are applied to our predicted genes for supporting the findings.