Adversarially Robust Malware Detection Using Monotonic Classification

Inigo Incer, M. Theodorides, Sadia Afroz, D. Wagner
{"title":"Adversarially Robust Malware Detection Using Monotonic Classification","authors":"Inigo Incer, M. Theodorides, Sadia Afroz, D. Wagner","doi":"10.1145/3180445.3180449","DOIUrl":null,"url":null,"abstract":"We propose monotonic classification with selection of monotonic features as a defense against evasion attacks on classifiers for malware detection. The monotonicity property of our classifier ensures that an adversary will not be able to evade the classifier by adding more features. We train and test our classifier on over one million executables collected from VirusTotal. Our secure classifier has 62% temporal detection rate at a 1% false positive rate. In comparison with a regular classifier with unrestricted features, the secure malware classifier results in a drop of approximately 13% in detection rate. Since this degradation in performance is a result of using a classifier that cannot be evaded, we interpret this performance hit as the cost of security in classifying malware.","PeriodicalId":355181,"journal":{"name":"Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180445.3180449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

We propose monotonic classification with selection of monotonic features as a defense against evasion attacks on classifiers for malware detection. The monotonicity property of our classifier ensures that an adversary will not be able to evade the classifier by adding more features. We train and test our classifier on over one million executables collected from VirusTotal. Our secure classifier has 62% temporal detection rate at a 1% false positive rate. In comparison with a regular classifier with unrestricted features, the secure malware classifier results in a drop of approximately 13% in detection rate. Since this degradation in performance is a result of using a classifier that cannot be evaded, we interpret this performance hit as the cost of security in classifying malware.
基于单调分类的对抗鲁棒恶意软件检测
我们提出了单调分类与单调特征的选择作为防御逃避攻击的分类器恶意软件检测。我们的分类器的单调性确保了对手无法通过添加更多的特征来逃避分类器。我们在从VirusTotal收集的100多万个可执行文件上训练和测试我们的分类器。我们的安全分类器具有62%的时间检测率和1%的假阳性率。与具有不受限制特征的常规分类器相比,安全恶意软件分类器的检测率下降了约13%。由于这种性能下降是使用无法回避的分类器的结果,因此我们将这种性能下降解释为对恶意软件进行分类的安全成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信