A maximal figure-of-merit learning approach to text categorization

Sheng Gao, Wen-Chin Wu, Chin-Hui Lee, Tat-Seng Chua
{"title":"A maximal figure-of-merit learning approach to text categorization","authors":"Sheng Gao, Wen-Chin Wu, Chin-Hui Lee, Tat-Seng Chua","doi":"10.1145/860435.860469","DOIUrl":null,"url":null,"abstract":"A novel maximal figure-of-merit (MFoM) learning approach to text categorization is proposed. Different from the conventional techniques, the proposed MFoM method attempts to integrate any performance metric of interest (e.g. accuracy, recall, precision, or F1 measure) into the design of any classifier. The corresponding classifier parameters are learned by optimizing an overall objective function of interest. To solve this highly nonlinear optimization problem, we use a generalized probabilistic descent algorithm. The MFoM learning framework is evaluated on the Reuters-21578 task with LSI-based feature extraction and a binary tree classifier. Experimental results indicate that the MFoM classifier gives improved F1 and enhanced robustness over the conventional one. It also outperforms the popular SVM method in micro-averaging F1. Other extensions to design discriminative multiple-category MFoM classifiers for application scenarios with new performance metrics could be envisioned too.","PeriodicalId":209809,"journal":{"name":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/860435.860469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

A novel maximal figure-of-merit (MFoM) learning approach to text categorization is proposed. Different from the conventional techniques, the proposed MFoM method attempts to integrate any performance metric of interest (e.g. accuracy, recall, precision, or F1 measure) into the design of any classifier. The corresponding classifier parameters are learned by optimizing an overall objective function of interest. To solve this highly nonlinear optimization problem, we use a generalized probabilistic descent algorithm. The MFoM learning framework is evaluated on the Reuters-21578 task with LSI-based feature extraction and a binary tree classifier. Experimental results indicate that the MFoM classifier gives improved F1 and enhanced robustness over the conventional one. It also outperforms the popular SVM method in micro-averaging F1. Other extensions to design discriminative multiple-category MFoM classifiers for application scenarios with new performance metrics could be envisioned too.
文本分类的最大价值图学习方法
提出了一种新的基于最大优点图的文本分类学习方法。与传统技术不同,所提出的MFoM方法试图将任何感兴趣的性能指标(例如准确率、召回率、精度或F1度量)集成到任何分类器的设计中。通过优化感兴趣的总体目标函数来学习相应的分类器参数。为了解决这个高度非线性的优化问题,我们使用了一种广义概率下降算法。利用基于lsi的特征提取和二叉树分类器对MFoM学习框架在Reuters-21578任务上进行了评估。实验结果表明,与传统分类器相比,MFoM分类器具有更好的F1和更强的鲁棒性。在微平均F1方面也优于常用的支持向量机方法。还可以设想为具有新性能指标的应用程序场景设计判别多类别MFoM分类器的其他扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信