Decoder Derived Cross-Component Linear Model Intra-Prediction for Video Coding

Z. Deng, Kai Zhang, Li Zhang
{"title":"Decoder Derived Cross-Component Linear Model Intra-Prediction for Video Coding","authors":"Z. Deng, Kai Zhang, Li Zhang","doi":"10.1109/ICIP42928.2021.9506173","DOIUrl":null,"url":null,"abstract":"This paper presents a decoder derived cross-component linear model (DD-CCLM) intra-prediction method, in which one or more linear models can be used to exploit the similarities between luma and chroma sample values, and the number of linear models used for a specific coding unit is adaptively determined at both encoder and decoder sides in a consistent way, without signalling a syntax element. The neighbouring samples are classified into two or three groups based on a K-means algorithm. Moreover, DDCCLM can be combined with normal intra-prediction modes such as DM mode. The proposed method can be well incorporated with the state-of-the-art CCLM intra-prediction in the Versatile Video Coding standard. Experimental results show that the proposed method provides an overall average bitrate saving of 0.52% for All Intra configurations under the JVET common test conditions, with negligible runtime change. On sequences with rich chroma information, the coding gain is up to 2.07%.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a decoder derived cross-component linear model (DD-CCLM) intra-prediction method, in which one or more linear models can be used to exploit the similarities between luma and chroma sample values, and the number of linear models used for a specific coding unit is adaptively determined at both encoder and decoder sides in a consistent way, without signalling a syntax element. The neighbouring samples are classified into two or three groups based on a K-means algorithm. Moreover, DDCCLM can be combined with normal intra-prediction modes such as DM mode. The proposed method can be well incorporated with the state-of-the-art CCLM intra-prediction in the Versatile Video Coding standard. Experimental results show that the proposed method provides an overall average bitrate saving of 0.52% for All Intra configurations under the JVET common test conditions, with negligible runtime change. On sequences with rich chroma information, the coding gain is up to 2.07%.
基于解码器的视频编码交叉分量线性模型内预测
本文提出了一种解码器衍生的交叉分量线性模型(DD-CCLM)内预测方法,该方法可以使用一个或多个线性模型来利用亮度和色度样本值之间的相似性,并且用于特定编码单元的线性模型的数量在编码器和解码器双方以一致的方式自适应确定,而不需要标记语法元素。根据K-means算法将相邻样本分为两组或三组。此外,DDCCLM还可以与DM模式等正常的内部预测模式相结合。该方法可以很好地与通用视频编码标准中最先进的CCLM内预测相结合。实验结果表明,在JVET通用测试条件下,该方法在所有Intra配置下的总体平均比特率节省为0.52%,运行时变化可以忽略不计。对于色度信息丰富的序列,编码增益可达2.07%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信