Service Topic Model with Probability Distance

Yu Lei, Philip S. Yu
{"title":"Service Topic Model with Probability Distance","authors":"Yu Lei, Philip S. Yu","doi":"10.1145/2996890.3007863","DOIUrl":null,"url":null,"abstract":"The number of Web services are growing rapidly on the Internet. Topics of services are becoming various. Semantic-based keyword search is used to retrieve proper services for service consumers. According to the semantic information implied in service database, we build a topic model to cluster and management related services. Our service recommendation approach can extract service patterns from correlated topics in semantic service descriptions. We use Latent Dirichlet Allocation to obtain the service patterns, and use Concept lattice to model the correlation between the extracted topics. Higher precision results are obtained in the experiments.","PeriodicalId":350701,"journal":{"name":"2016 IEEE/ACM 9th International Conference on Utility and Cloud Computing (UCC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 9th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996890.3007863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The number of Web services are growing rapidly on the Internet. Topics of services are becoming various. Semantic-based keyword search is used to retrieve proper services for service consumers. According to the semantic information implied in service database, we build a topic model to cluster and management related services. Our service recommendation approach can extract service patterns from correlated topics in semantic service descriptions. We use Latent Dirichlet Allocation to obtain the service patterns, and use Concept lattice to model the correlation between the extracted topics. Higher precision results are obtained in the experiments.
具有概率距离的服务主题模型
Internet上的Web服务数量正在迅速增长。服务的主题越来越多样化。基于语义的关键字搜索用于为服务使用者检索适当的服务。根据服务数据库中隐含的语义信息,建立主题模型对相关服务进行聚类和管理。我们的服务推荐方法可以从语义服务描述中的相关主题中提取服务模式。我们使用Latent Dirichlet Allocation来获取服务模式,并使用概念格来建模抽取的主题之间的相关性。实验结果表明,该方法精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信