Theory and Simulation of Multipurpose Antenna for Detection and Degrading of Viruses in Times of Pandemic

H. Nieto-Chaupis
{"title":"Theory and Simulation of Multipurpose Antenna for Detection and Degrading of Viruses in Times of Pandemic","authors":"H. Nieto-Chaupis","doi":"10.1109/SNPD54884.2022.10051813","DOIUrl":null,"url":null,"abstract":"This paper present a theoretical model that aims to minimize the capabilities of viruses in public places through engineered electromagnetic fields. Thus, the modeling of antenna based at the infinitesimal dipole is used. In addition fields and directivity at the far field region are calculated. This proposal empathizes the fact that the radiated energy will affect the spike protein of viruses. In this manner the functionality of virus as to produce infection would be minimized. Simulations of the radiate electric field are presented.","PeriodicalId":425462,"journal":{"name":"2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD54884.2022.10051813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper present a theoretical model that aims to minimize the capabilities of viruses in public places through engineered electromagnetic fields. Thus, the modeling of antenna based at the infinitesimal dipole is used. In addition fields and directivity at the far field region are calculated. This proposal empathizes the fact that the radiated energy will affect the spike protein of viruses. In this manner the functionality of virus as to produce infection would be minimized. Simulations of the radiate electric field are presented.
大流行时期病毒检测与降解的多用途天线理论与仿真
本文提出了一个理论模型,旨在通过工程电磁场将病毒在公共场所的能力降至最低。因此,采用了基于极小偶极子的天线建模方法。此外,还计算了远场区域的场和指向性。这一建议考虑到辐射能量会影响病毒的刺突蛋白这一事实。这样,病毒产生感染的功能就会被最小化。给出了辐射电场的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信