Evaluation and research of FBG optical temperature sensors network

U. Seņkāns, S. Spolitis, V. Bobrovs
{"title":"Evaluation and research of FBG optical temperature sensors network","authors":"U. Seņkāns, S. Spolitis, V. Bobrovs","doi":"10.1109/RTUWO.2017.8228509","DOIUrl":null,"url":null,"abstract":"Currently the world is experiencing a fast evolution of modern communication and information technologies due to infrastructure development. Consequently, there is a growing need to be able to quickly and resource-efficiently receive, transmit and process information, monitor different physical processes, environment. For this purpose, optical communication systems and optical fiber sensors are directly suitable. This paper focuses on a study of fiber Bragg grating (FBG) optical sensors, with particular emphasis on fiber optical temperature sensors. The experimental part is made of computer simulation by using RSoft OptSim software, during which the temperature effects on five FBG optical sensors central wavelengths are investigated. This developed optical sensors network is combined with an optical transmission system on one shared 20 km long optical fiber. Here the coexistence of multiple sensor network and 50 GHz spaced 4-channel non-return-to-zero (NRZ) intensity modulated wavelength division multiplexed (WDM) optical communication system with 10 Gbit/s downstream transmission is investigated and evaluated.","PeriodicalId":183694,"journal":{"name":"2017 Advances in Wireless and Optical Communications (RTUWO)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Advances in Wireless and Optical Communications (RTUWO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUWO.2017.8228509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Currently the world is experiencing a fast evolution of modern communication and information technologies due to infrastructure development. Consequently, there is a growing need to be able to quickly and resource-efficiently receive, transmit and process information, monitor different physical processes, environment. For this purpose, optical communication systems and optical fiber sensors are directly suitable. This paper focuses on a study of fiber Bragg grating (FBG) optical sensors, with particular emphasis on fiber optical temperature sensors. The experimental part is made of computer simulation by using RSoft OptSim software, during which the temperature effects on five FBG optical sensors central wavelengths are investigated. This developed optical sensors network is combined with an optical transmission system on one shared 20 km long optical fiber. Here the coexistence of multiple sensor network and 50 GHz spaced 4-channel non-return-to-zero (NRZ) intensity modulated wavelength division multiplexed (WDM) optical communication system with 10 Gbit/s downstream transmission is investigated and evaluated.
光纤光栅光学温度传感器网络的评价与研究
目前,由于基础设施的发展,世界正在经历现代通信和信息技术的快速发展。因此,越来越需要能够快速和资源高效地接收、传输和处理信息,监控不同的物理过程、环境。为此,光通信系统和光纤传感器直接适用。本文主要对光纤布拉格光栅(FBG)光传感器进行了研究,重点介绍了光纤温度传感器。实验部分采用RSoft OptSim软件进行计算机仿真,研究了温度对五种光纤光栅光传感器中心波长的影响。这种开发的光传感器网络与一根共享的20公里长的光纤上的光传输系统相结合。本文研究了多传感器网络与下行传输速率为10gbit /s的50 GHz间隔4通道非归零(NRZ)强度调制波分复用(WDM)光通信系统的共存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信