Robust neural network control of rigid-link electrically-driven robots

C. Kwan, F. L. Lewis, D. Dawson
{"title":"Robust neural network control of rigid-link electrically-driven robots","authors":"C. Kwan, F. L. Lewis, D. Dawson","doi":"10.1109/ISIC.1995.525047","DOIUrl":null,"url":null,"abstract":"A robust neural network (NN) controller is proposed for the motion control of rigid-link electrically-driven (RLED) robots. The NNs are used to approximate two very complicated nonlinear functions. The main advantage of our approach is that the NN weights are tuned online, with no off-line learning phase required. Most importantly, we can guarantee the uniformly, ultimately bounded (UUB) stability of tracking errors and NN weights. When compared with standard adaptive robot controllers, we do not require persistent excitation conditions and no lengthy and tedious preliminary analysis to determine a regression matrix is needed.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

A robust neural network (NN) controller is proposed for the motion control of rigid-link electrically-driven (RLED) robots. The NNs are used to approximate two very complicated nonlinear functions. The main advantage of our approach is that the NN weights are tuned online, with no off-line learning phase required. Most importantly, we can guarantee the uniformly, ultimately bounded (UUB) stability of tracking errors and NN weights. When compared with standard adaptive robot controllers, we do not require persistent excitation conditions and no lengthy and tedious preliminary analysis to determine a regression matrix is needed.
刚性连杆电驱动机器人的鲁棒神经网络控制
提出了一种鲁棒神经网络(NN)控制器,用于刚性连杆电驱动机器人的运动控制。神经网络用于逼近两个非常复杂的非线性函数。我们方法的主要优点是网络权重是在线调整的,不需要离线学习阶段。最重要的是,我们可以保证跟踪误差和神经网络权值的一致最终有界(UUB)稳定性。与标准的自适应机器人控制器相比,我们不需要持续的激励条件,也不需要冗长而繁琐的初步分析来确定回归矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信