The Use of Convex Least Square Regression to Represent a Fuzzy DEA Model

W. Chung
{"title":"The Use of Convex Least Square Regression to Represent a Fuzzy DEA Model","authors":"W. Chung","doi":"10.1109/ICIMSA.2017.7985612","DOIUrl":null,"url":null,"abstract":"Convex Nonparametric Least Squares (CNLSs) is a nonparametric regression technique to estimate monotonic increasing and convex functions. In addition, CNLS method builds on the same axioms as Data Envelopment Analysis (DEA) and also takes into account noise. This paper is to investigate the use of convex least square regression to represent a fuzzy DEA model. By the results of CNLS, we can repeatedly use the corresponding fuzzy DEA model to assess the performance of unobserved decision making units. Note that DEA results cannot be repeatedly used as the regression results for unobserved entities. The popularity of fuzzy DEA would be enhanced.","PeriodicalId":447657,"journal":{"name":"2017 International Conference on Industrial Engineering, Management Science and Application (ICIMSA)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Industrial Engineering, Management Science and Application (ICIMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMSA.2017.7985612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convex Nonparametric Least Squares (CNLSs) is a nonparametric regression technique to estimate monotonic increasing and convex functions. In addition, CNLS method builds on the same axioms as Data Envelopment Analysis (DEA) and also takes into account noise. This paper is to investigate the use of convex least square regression to represent a fuzzy DEA model. By the results of CNLS, we can repeatedly use the corresponding fuzzy DEA model to assess the performance of unobserved decision making units. Note that DEA results cannot be repeatedly used as the regression results for unobserved entities. The popularity of fuzzy DEA would be enhanced.
用凸最小二乘回归表示模糊DEA模型
凸非参数最小二乘(CNLSs)是一种估计单调递增函数和凸函数的非参数回归技术。此外,CNLS方法建立在与数据包络分析(DEA)相同的公理基础上,并考虑了噪声。本文研究用凸最小二乘回归来表示一个模糊DEA模型。通过CNLS的结果,我们可以重复使用相应的模糊DEA模型来评估未观察到的决策单元的性能。注意,DEA结果不能重复用作未观测实体的回归结果。模糊DEA的普及程度将得到提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信