Simple extractors for all min-entropies and a new pseudo-random generator

Ronen Shaltiel, C. Umans
{"title":"Simple extractors for all min-entropies and a new pseudo-random generator","authors":"Ronen Shaltiel, C. Umans","doi":"10.1109/SFCS.2001.959941","DOIUrl":null,"url":null,"abstract":"We present a simple, self-contained extractor construction that produces good extractors for all min-entropies (min-entropy measures the amount of randomness contained in a weak random source). Our construction is algebraic and builds on a new polynomial-based approach introduced by A. Ta-Shma et al. (2001). Using our improvements, we obtain, for example, an extractor with output length m=k/sup 1-/spl delta// and seed length O(log n). This matches the parameters of L. Trevisan's (1999) breakthrough result and additionally achieves those parameters for small min-entropies k. Our construction gives a much simpler and more direct solution to this problem. Applying similar ideas to the problem of building pseudo-random generators, we obtain a new pseudo-random generator construction that is not based on the NW generator (N. Nisan and A. Widgerson, 1994), and turns worst-case hardness directly into pseudo-randomness. The parameters of this generator are strong enough to obtain a new proof that P=BPP if E requires exponential size circuits. Essentially, the same construction yields a hitting set generator with optimal seed length that outputs s/sup /spl Omega/(1)/ bits when given a function that requires circuits of size s (for any s). This implies a hardness versus randomness trade off for RP and BPP that is optimal (up to polynomial factors), solving an open problem raised by R. Impagliazzo et al. (1999). Our generators can also be used to derandomize AM.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"213","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 213

Abstract

We present a simple, self-contained extractor construction that produces good extractors for all min-entropies (min-entropy measures the amount of randomness contained in a weak random source). Our construction is algebraic and builds on a new polynomial-based approach introduced by A. Ta-Shma et al. (2001). Using our improvements, we obtain, for example, an extractor with output length m=k/sup 1-/spl delta// and seed length O(log n). This matches the parameters of L. Trevisan's (1999) breakthrough result and additionally achieves those parameters for small min-entropies k. Our construction gives a much simpler and more direct solution to this problem. Applying similar ideas to the problem of building pseudo-random generators, we obtain a new pseudo-random generator construction that is not based on the NW generator (N. Nisan and A. Widgerson, 1994), and turns worst-case hardness directly into pseudo-randomness. The parameters of this generator are strong enough to obtain a new proof that P=BPP if E requires exponential size circuits. Essentially, the same construction yields a hitting set generator with optimal seed length that outputs s/sup /spl Omega/(1)/ bits when given a function that requires circuits of size s (for any s). This implies a hardness versus randomness trade off for RP and BPP that is optimal (up to polynomial factors), solving an open problem raised by R. Impagliazzo et al. (1999). Our generators can also be used to derandomize AM.
所有最小熵的简单提取器和一个新的伪随机生成器
我们提出了一个简单的、自包含的提取器结构,它对所有最小熵(最小熵测量弱随机源中包含的随机性量)产生良好的提取器。我们的构造是代数的,建立在a . Ta-Shma等人(2001)引入的一种新的基于多项式的方法之上。利用我们的改进,我们得到了一个输出长度为m=k/sup 1-/spl delta//和种子长度为O(log n)的提取器。这与L. Trevisan(1999)的突破性结果的参数相匹配,并且在最小熵k较小的情况下也实现了这些参数。我们的构造为这个问题提供了一个更简单、更直接的解决方案。将类似的思想应用于构建伪随机生成器的问题,我们获得了一种新的伪随机生成器构造,它不是基于NW生成器(N. Nisan和a . Widgerson, 1994),并将最坏情况硬度直接转化为伪随机性。该发生器的参数足够强,可以得到当E需要指数级电路时P=BPP的新证明。本质上,相同的构造产生了一个具有最佳种子长度的碰撞集生成器,当给定一个需要大小为s的电路的函数时(对于任何s),它输出s/sup /spl Omega/(1)/ bits。这意味着RP和BPP的最佳(最多多项式因子)的硬与随机权衡,解决了R. Impagliazzo等人(1999)提出的一个开放问题。我们的生成器也可以用来去随机化AM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信