Analysis and prediction of cranberry growth with dynamical neural network models

C. H. Chen, Bichuan Shen
{"title":"Analysis and prediction of cranberry growth with dynamical neural network models","authors":"C. H. Chen, Bichuan Shen","doi":"10.1109/IJCNN.1999.836208","DOIUrl":null,"url":null,"abstract":"Cranberry plants are very sensitive to weather and other conditions. In this paper, the condition of cranberry growth is analyzed through PCA (principle component analysis) of the minimum cranberry spectral match measurement data. Three neural network models are applied to the one-month ahead prediction. The simulation results show the high performance modeling ability of these neural networks. The reliable prediction provided by the dynamic neural networks will be useful for the farmers to monitor and control the cranberry growth process.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.836208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cranberry plants are very sensitive to weather and other conditions. In this paper, the condition of cranberry growth is analyzed through PCA (principle component analysis) of the minimum cranberry spectral match measurement data. Three neural network models are applied to the one-month ahead prediction. The simulation results show the high performance modeling ability of these neural networks. The reliable prediction provided by the dynamic neural networks will be useful for the farmers to monitor and control the cranberry growth process.
动态神经网络模型对蔓越莓生长的分析与预测
蔓越莓对天气和其他条件非常敏感。本文通过对蔓越莓光谱最小匹配测量数据进行主成分分析,分析蔓越莓生长状况。将三个神经网络模型应用于一个月前的预测。仿真结果表明,这些神经网络具有良好的建模能力。动态神经网络提供的可靠预测将有助于农民监测和控制蔓越莓的生长过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信