Rating Prediction in Conversational Task Assistants with Behavioral and Conversational-Flow Features

Rafael Ferreira, David Semedo, João Magalhães
{"title":"Rating Prediction in Conversational Task Assistants with Behavioral and Conversational-Flow Features","authors":"Rafael Ferreira, David Semedo, João Magalhães","doi":"10.1145/3539618.3592048","DOIUrl":null,"url":null,"abstract":"Predicting the success of Conversational Task Assistants (CTA) can be critical to understand user behavior and act accordingly. In this paper, we propose TB-Rater, a Transformer model which combines conversational-flow features with user behavior features for predicting user ratings in a CTA scenario. In particular, we use real human-agent conversations and ratings collected in the Alexa TaskBot challenge, a novel multimodal and multi-turn conversational context. Our results show the advantages of modeling both the conversational-flow and behavioral aspects of the conversation in a single model for offline rating prediction. Additionally, an analysis of the CTA-specific behavioral features brings insights into this setting and can be used to bootstrap future systems.","PeriodicalId":425056,"journal":{"name":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539618.3592048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Predicting the success of Conversational Task Assistants (CTA) can be critical to understand user behavior and act accordingly. In this paper, we propose TB-Rater, a Transformer model which combines conversational-flow features with user behavior features for predicting user ratings in a CTA scenario. In particular, we use real human-agent conversations and ratings collected in the Alexa TaskBot challenge, a novel multimodal and multi-turn conversational context. Our results show the advantages of modeling both the conversational-flow and behavioral aspects of the conversation in a single model for offline rating prediction. Additionally, an analysis of the CTA-specific behavioral features brings insights into this setting and can be used to bootstrap future systems.
具有行为和会话流特征的会话任务助手的评价预测
预测会话任务助理(CTA)的成功对于理解用户行为并采取相应行动至关重要。在本文中,我们提出了TB-Rater,这是一个Transformer模型,它结合了会话流特征和用户行为特征,用于预测CTA场景中的用户评级。特别是,我们使用了在Alexa TaskBot挑战中收集的真实的人类代理对话和评级,这是一种新颖的多模式和多回合对话环境。我们的研究结果显示了在一个模型中对会话流和会话行为方面进行建模的优势,用于离线评级预测。此外,对cta特定行为特征的分析可以深入了解此设置,并可用于引导未来的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信