Parkinson disease detection using ensemble method in PASW benchmark

Md. Inzamam-Ul-Hossain, L. Mackinnon, Md. Rafiqul Islam
{"title":"Parkinson disease detection using ensemble method in PASW benchmark","authors":"Md. Inzamam-Ul-Hossain, L. Mackinnon, Md. Rafiqul Islam","doi":"10.1109/IADCC.2015.7154790","DOIUrl":null,"url":null,"abstract":"We present an ensemble method to classify Parkinson patients and healthy people. C&R Tree, Bayes Net and C5.0 are used to generate ensemble method. Using supervised learning technique, the proposed method generates rules to distinguish Parkinson patients from healthy people. The proposed method uses single classifier to generate rules which are used as input for the next used classifier and in this way final rules are generated to predict more accurate results than individual classifier used to generate ensemble method. This method shows lower number of misclassification instances than single classifiers used to build model. Ensemble method shows better results for training and testing accuracy than single classifier.","PeriodicalId":123908,"journal":{"name":"2015 IEEE International Advance Computing Conference (IACC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2015.7154790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present an ensemble method to classify Parkinson patients and healthy people. C&R Tree, Bayes Net and C5.0 are used to generate ensemble method. Using supervised learning technique, the proposed method generates rules to distinguish Parkinson patients from healthy people. The proposed method uses single classifier to generate rules which are used as input for the next used classifier and in this way final rules are generated to predict more accurate results than individual classifier used to generate ensemble method. This method shows lower number of misclassification instances than single classifiers used to build model. Ensemble method shows better results for training and testing accuracy than single classifier.
PASW基准中的集成方法检测帕金森病
我们提出了一种综合分类帕金森患者和健康人的方法。采用C&R Tree、Bayes Net和C5.0生成集成方法。该方法采用监督学习技术,生成规则来区分帕金森患者和健康人。该方法使用单个分类器生成规则,这些规则作为下一个使用的分类器的输入,以这种方式生成最终规则,以预测比使用单个分类器生成集成方法更准确的结果。该方法比使用单一分类器构建模型的错误分类实例数量少。集成方法在训练和测试准确率上均优于单一分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信