Optimization of Big Data Mining Algorithm Based on Spark Framework: Preparation of Camera-Ready Contributions to SCITEPRESS Proceedings

Yan Zeng, Jun Yu Li
{"title":"Optimization of Big Data Mining Algorithm Based on Spark Framework: Preparation of Camera-Ready Contributions to SCITEPRESS Proceedings","authors":"Yan Zeng, Jun Yu Li","doi":"10.1145/3523286.3524685","DOIUrl":null,"url":null,"abstract":"Abstract: Frequent itemsets mining is the core of association rule mining data. However, with the continuous increase of data, the traditional Apriori algorithm cannot meet people's daily needs, and the algorithm efficiency is low. This paper proposes the Eclat algorithm based on the Spark framework. In view of the shortcomings of serial algorithm in processing big data, it is modified. Using the vertical structure to avoid repetitive traversal of large amounts of data, while computing based on memory can greatly reduce I/O load and reduce computing time. Combined with the pruning strategy, the calculation of irrelevant itemsets is reduced, and the parallel computing capability of the algorithm is improved. The experimental results show that the efficiency of the Eclat algorithm based on the Spark framework is far better than that of the Eclat algorithm, and it has high efficiency and good scalability when processing massive data.","PeriodicalId":268165,"journal":{"name":"2022 2nd International Conference on Bioinformatics and Intelligent Computing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Bioinformatics and Intelligent Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3523286.3524685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Frequent itemsets mining is the core of association rule mining data. However, with the continuous increase of data, the traditional Apriori algorithm cannot meet people's daily needs, and the algorithm efficiency is low. This paper proposes the Eclat algorithm based on the Spark framework. In view of the shortcomings of serial algorithm in processing big data, it is modified. Using the vertical structure to avoid repetitive traversal of large amounts of data, while computing based on memory can greatly reduce I/O load and reduce computing time. Combined with the pruning strategy, the calculation of irrelevant itemsets is reduced, and the parallel computing capability of the algorithm is improved. The experimental results show that the efficiency of the Eclat algorithm based on the Spark framework is far better than that of the Eclat algorithm, and it has high efficiency and good scalability when processing massive data.
基于Spark框架的大数据挖掘算法优化:为sciitepress论文集准备相机稿件
摘要频繁项集挖掘是关联规则挖掘数据的核心。然而,随着数据量的不断增加,传统的Apriori算法已经不能满足人们的日常需求,而且算法效率较低。本文提出了基于Spark框架的Eclat算法。针对串行算法在处理大数据时存在的不足,对其进行了改进。使用垂直结构避免了对大量数据的重复遍历,同时基于内存进行计算,可以大大减少I/O负载,减少计算时间。结合剪枝策略,减少了不相关项集的计算量,提高了算法的并行计算能力。实验结果表明,基于Spark框架的Eclat算法的效率远远优于Eclat算法,并且在处理海量数据时具有较高的效率和良好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信