Decoupling Control for Electrode System in Electric Arc Furnace based on Neural Network Inverse Identification

Zhang Shao-de
{"title":"Decoupling Control for Electrode System in Electric Arc Furnace based on Neural Network Inverse Identification","authors":"Zhang Shao-de","doi":"10.1109/ISDA.2006.253815","DOIUrl":null,"url":null,"abstract":"RBF neural network based on nearest neighbor clustering algorithm is applied for three-phase electrode system in electric arc furnace. Real-time on-line decoupling of MIMO inverse system is realized, and transfers MIMO system with strong coupling into individual pseudo linear plant. On the base of these, the method dealing linear system can be used for the pseudo linear system. The simulation and experiments indicate that this strategy is suitable for engineering","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.253815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

RBF neural network based on nearest neighbor clustering algorithm is applied for three-phase electrode system in electric arc furnace. Real-time on-line decoupling of MIMO inverse system is realized, and transfers MIMO system with strong coupling into individual pseudo linear plant. On the base of these, the method dealing linear system can be used for the pseudo linear system. The simulation and experiments indicate that this strategy is suitable for engineering
基于神经网络反辨识的电弧炉电极系统解耦控制
将基于最近邻聚类算法的RBF神经网络应用于电弧炉三相电极系统。实现了MIMO逆系统的实时在线解耦,将具有强耦合的MIMO系统转化为单个的伪线性对象。在此基础上,将处理线性系统的方法应用于伪线性系统。仿真和实验结果表明,该策略适用于工程应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信