System Effects Test Example for Atmospheric Radiation Environment

L. Dominik
{"title":"System Effects Test Example for Atmospheric Radiation Environment","authors":"L. Dominik","doi":"10.1109/DASC43569.2019.9081798","DOIUrl":null,"url":null,"abstract":"Galactic cosmic rays and solar rays produce particle cascades in the atmosphere, where resulting particles (mainly high energy neutrons) can interact with components to cause Single Event Effects (SEE). The effects from atmospheric radiation can cause various fault conditions, including corrupted data, processor halts and interrupts, operational errors, and component latch-ups requiring a power cycle. As technology trends continue to achieve higher densities and lower voltages, semiconductor devices are becoming more susceptible to atmospheric radiation effects. Testing to measure the susceptibility of a component or equipment to atmospheric radiation environments requires the utilization of highly advanced laboratory facilities. Testing can be performed at the component level to measure the device-level susceptibility, or the test can be performed to measure impacts at the equipment level. This paper provides an example of a test intended to measure equipment level effects while irradiating a single component. The purpose of the experiment was to validate the mitigations and protections designed into the equipment.","PeriodicalId":129864,"journal":{"name":"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC43569.2019.9081798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Galactic cosmic rays and solar rays produce particle cascades in the atmosphere, where resulting particles (mainly high energy neutrons) can interact with components to cause Single Event Effects (SEE). The effects from atmospheric radiation can cause various fault conditions, including corrupted data, processor halts and interrupts, operational errors, and component latch-ups requiring a power cycle. As technology trends continue to achieve higher densities and lower voltages, semiconductor devices are becoming more susceptible to atmospheric radiation effects. Testing to measure the susceptibility of a component or equipment to atmospheric radiation environments requires the utilization of highly advanced laboratory facilities. Testing can be performed at the component level to measure the device-level susceptibility, or the test can be performed to measure impacts at the equipment level. This paper provides an example of a test intended to measure equipment level effects while irradiating a single component. The purpose of the experiment was to validate the mitigations and protections designed into the equipment.
大气辐射环境系统效应测试实例
银河宇宙射线和太阳射线在大气中产生粒子级联,在那里产生的粒子(主要是高能中子)可以与组件相互作用,造成单事件效应(SEE)。大气辐射的影响可能导致各种故障情况,包括损坏的数据、处理器停止和中断、操作错误以及需要电源周期的组件锁死。随着技术趋势不断实现更高的密度和更低的电压,半导体器件越来越容易受到大气辐射的影响。测量组件或设备对大气辐射环境敏感性的测试需要使用高度先进的实验室设施。可以在组件级别执行测试以测量设备级别的敏感性,也可以在设备级别执行测试以测量影响。本文提供了一个测试的例子,用于测量辐照单个组件时设备水平的影响。实验的目的是验证设计到设备中的缓解和保护措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信