An implicit maxwell solver

A. Christlieb, Lee VanGroingen, B. Ong
{"title":"An implicit maxwell solver","authors":"A. Christlieb, Lee VanGroingen, B. Ong","doi":"10.1109/PLASMA.2011.5992902","DOIUrl":null,"url":null,"abstract":"In this work, we present progress towards the develop of a Lagrangian method which can be implemented as a semi-implicit or a fully implicit scheme for the Vlasov Maxwell system aimed at bridging the time scale gap between electron plasma oscillations and the speed of light. At the heart of the proposed method is the development of an implicit Maxwell solver that recovers the Darwin limit of electromagnetics as c →∞. The proposed implicit Maxwell solver differs from others in that the method will first discretize the time operator and then invert the resulting semi-discreet wave operator using a free space Greens function. We refer to the approach of first discretizing in time as the Method of Lines Transpose (MOLT), but this work departs from other MOLt methods in that we work directly with high order time derivatives. A major advantage of the new method over purely using the Darwin limit is that the new method can incorporate dielectric layers, which is not possible if the strict Darwin limit is used.","PeriodicalId":221247,"journal":{"name":"2011 Abstracts IEEE International Conference on Plasma Science","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Abstracts IEEE International Conference on Plasma Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2011.5992902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present progress towards the develop of a Lagrangian method which can be implemented as a semi-implicit or a fully implicit scheme for the Vlasov Maxwell system aimed at bridging the time scale gap between electron plasma oscillations and the speed of light. At the heart of the proposed method is the development of an implicit Maxwell solver that recovers the Darwin limit of electromagnetics as c →∞. The proposed implicit Maxwell solver differs from others in that the method will first discretize the time operator and then invert the resulting semi-discreet wave operator using a free space Greens function. We refer to the approach of first discretizing in time as the Method of Lines Transpose (MOLT), but this work departs from other MOLt methods in that we work directly with high order time derivatives. A major advantage of the new method over purely using the Darwin limit is that the new method can incorporate dielectric layers, which is not possible if the strict Darwin limit is used.
隐式麦克斯韦求解器
在这项工作中,我们介绍了拉格朗日方法的发展进展,该方法可以作为半隐式或全隐式方案实现弗拉索夫麦克斯韦系统,旨在弥合电子等离子体振荡和光速之间的时间尺度差距。所提出的方法的核心是开发一个隐式麦克斯韦求解器,该求解器恢复了电磁学的达尔文极限为c→∞。所提出的隐式麦克斯韦求解器与其他方法的不同之处在于,该方法将首先离散时间算子,然后使用自由空间格林函数反转得到的半离散波算子。我们将首先在时间上离散的方法称为线转置方法(MOLT),但这项工作与其他MOLT方法不同,因为我们直接处理高阶时间导数。与纯粹使用达尔文极限相比,新方法的一个主要优点是,新方法可以合并介电层,如果使用严格的达尔文极限,这是不可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信