Gene Set Analysis with Covariates

I. Bebu, F. Seillier-Moiseiwitsch, Jing Wu, T. Mathew
{"title":"Gene Set Analysis with Covariates","authors":"I. Bebu, F. Seillier-Moiseiwitsch, Jing Wu, T. Mathew","doi":"10.1109/BIBE.2010.63","DOIUrl":null,"url":null,"abstract":"In microarray experiments, expression profiles are obtained for thousands of genes under several treatments. Traditionally, most of the statistical techniques employed are concentrated around univariate methods. They ignore the inter-gene dependence and do not use any prior biological knowledge. Gene set analysis addresses both these concerns by analyzing together a group of correlated genes, for example genes that share a common biological function, chromosomal location, or regulation. In this paper we propose a multivariate analysis of covariance model (MANCOVA) for gene set analysis with covariates. Principal component analysis (PCA) is used to address the dimensionality problem. The two testing procedures presented are shown to perform well using simulations.","PeriodicalId":330904,"journal":{"name":"2010 IEEE International Conference on BioInformatics and BioEngineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on BioInformatics and BioEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2010.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In microarray experiments, expression profiles are obtained for thousands of genes under several treatments. Traditionally, most of the statistical techniques employed are concentrated around univariate methods. They ignore the inter-gene dependence and do not use any prior biological knowledge. Gene set analysis addresses both these concerns by analyzing together a group of correlated genes, for example genes that share a common biological function, chromosomal location, or regulation. In this paper we propose a multivariate analysis of covariance model (MANCOVA) for gene set analysis with covariates. Principal component analysis (PCA) is used to address the dimensionality problem. The two testing procedures presented are shown to perform well using simulations.
协变量基因集分析
在微阵列实验中,在几种处理下获得了数千个基因的表达谱。传统上,大多数采用的统计技术都集中在单变量方法上。他们忽略了基因间的依赖性,不使用任何先前的生物学知识。基因集分析通过分析一组相关基因来解决这两个问题,例如共享共同生物功能、染色体位置或调节的基因。本文提出了一种多变量协方差分析模型(MANCOVA),用于含协变量的基因集分析。主成分分析(PCA)用于解决维数问题。仿真结果表明,所提出的两种测试方法都具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信