An in-depth analysis of data aggregation cost factors in a columnar in-memory database

Stephan Müller, H. Plattner
{"title":"An in-depth analysis of data aggregation cost factors in a columnar in-memory database","authors":"Stephan Müller, H. Plattner","doi":"10.1145/2390045.2390057","DOIUrl":null,"url":null,"abstract":"Precise prediction of query execution performance is the basis for various database optimization strategies. With columnar in-memory databases, cost modeling changes in two dimensions: First, models for disk-based databases are not well-suited as the new bottleneck is main memory access. Second, the possibility to execute mixed workloads creates new challenges. For transactional and analytical queries with aggregation operations, memory access patterns and thus execution times vary significantly. This paper discusses the influences of data characteristics on aggregation operations and elevates not considered factors by existing cost model approaches. Further, we present benchmarks implemented and executed on a columnar in-memory research database to underline our assumptions.","PeriodicalId":335396,"journal":{"name":"International Workshop on Data Warehousing and OLAP","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Warehousing and OLAP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390045.2390057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Precise prediction of query execution performance is the basis for various database optimization strategies. With columnar in-memory databases, cost modeling changes in two dimensions: First, models for disk-based databases are not well-suited as the new bottleneck is main memory access. Second, the possibility to execute mixed workloads creates new challenges. For transactional and analytical queries with aggregation operations, memory access patterns and thus execution times vary significantly. This paper discusses the influences of data characteristics on aggregation operations and elevates not considered factors by existing cost model approaches. Further, we present benchmarks implemented and executed on a columnar in-memory research database to underline our assumptions.
对列式内存数据库中数据聚合成本因素的深入分析
查询执行性能的精确预测是各种数据库优化策略的基础。对于列式内存数据库,成本建模在两个方面发生了变化:首先,基于磁盘的数据库模型不太适合,因为新的瓶颈是主内存访问。其次,执行混合工作负载的可能性带来了新的挑战。对于具有聚合操作的事务性和分析性查询,内存访问模式和执行时间差别很大。本文讨论了数据特征对聚合操作的影响,并提出了现有成本模型方法中未考虑的因素。此外,我们提供了在列式内存研究数据库上实现和执行的基准测试,以强调我们的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信