Reconstruction of retinal spectra from RGB data using a RBF network

U. Nguyen, L. Laaksonen, H. Uusitalo, L. Lensu
{"title":"Reconstruction of retinal spectra from RGB data using a RBF network","authors":"U. Nguyen, L. Laaksonen, H. Uusitalo, L. Lensu","doi":"10.1109/IPTA.2016.7820973","DOIUrl":null,"url":null,"abstract":"In comparison with the standard three-channel colour images, spectral retinal images provide more detailed information about the structure of the retina. However, the availability of spectral retinal images for the research and development of image analysis methods is limited. In this paper, we propose two approaches to reconstruct spectral retinal images based on common RGB images. The approaches make use of fuzzy c-means clustering to perform quantization of the image data, and the radial basis function network to learn the mapping from the three-component color representation to the spectral space. The dissimilarities between the reconstructed spectral images and the original ones are evaluated on a retinal image set with spectral and RGB images, and by using a standard spectral quality metric. The experimental results show that the proposed approaches are able to reconstruct spectral retinal images with a relatively high accuracy.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In comparison with the standard three-channel colour images, spectral retinal images provide more detailed information about the structure of the retina. However, the availability of spectral retinal images for the research and development of image analysis methods is limited. In this paper, we propose two approaches to reconstruct spectral retinal images based on common RGB images. The approaches make use of fuzzy c-means clustering to perform quantization of the image data, and the radial basis function network to learn the mapping from the three-component color representation to the spectral space. The dissimilarities between the reconstructed spectral images and the original ones are evaluated on a retinal image set with spectral and RGB images, and by using a standard spectral quality metric. The experimental results show that the proposed approaches are able to reconstruct spectral retinal images with a relatively high accuracy.
利用RBF网络从RGB数据重建视网膜光谱
与标准的三通道彩色图像相比,光谱视网膜图像提供了更多关于视网膜结构的详细信息。然而,用于研究和开发图像分析方法的光谱视网膜图像的可用性是有限的。本文提出了两种基于普通RGB图像重建光谱视网膜图像的方法。该方法利用模糊c均值聚类对图像数据进行量化,利用径向基函数网络学习从三分量颜色表示到光谱空间的映射。在具有光谱和RGB图像的视网膜图像集上,使用标准光谱质量度量来评估重建光谱图像与原始图像之间的差异。实验结果表明,该方法能够以较高的精度重建视网膜光谱图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信