Fuzzy modelling in an intelligent data browser

J. F. Baldwin, T. P. Martin
{"title":"Fuzzy modelling in an intelligent data browser","authors":"J. F. Baldwin, T. P. Martin","doi":"10.1109/FUZZY.1995.409937","DOIUrl":null,"url":null,"abstract":"The Fril fuzzy data browser is a software tool which can automatically derive rules from large bodies of data. The data need not be completely known, and the derived rules can be used to fill in missing values, highlight anomalous values, or predict values in new cases. Human expertise can be input at any stage, and hierarchical systems of rules can be generated. Rules use the fuzzy or evidential logic uncertainty calculus built-in to Fril. It is also possible to generate C-code, although rules are easier to understand, and more efficiently executed in Fril. An enhanced version of the fuzzy data browser is linked to Mathematica, giving access to sophisticated graphical and mathematical facilities. We focus on some simple examples to illustrate the use of the enhanced fuzzy data browser in developing rules which model data.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.409937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The Fril fuzzy data browser is a software tool which can automatically derive rules from large bodies of data. The data need not be completely known, and the derived rules can be used to fill in missing values, highlight anomalous values, or predict values in new cases. Human expertise can be input at any stage, and hierarchical systems of rules can be generated. Rules use the fuzzy or evidential logic uncertainty calculus built-in to Fril. It is also possible to generate C-code, although rules are easier to understand, and more efficiently executed in Fril. An enhanced version of the fuzzy data browser is linked to Mathematica, giving access to sophisticated graphical and mathematical facilities. We focus on some simple examples to illustrate the use of the enhanced fuzzy data browser in developing rules which model data.<>
智能数据浏览器中的模糊建模
Fril模糊数据浏览器是一个能够从大量数据中自动导出规则的软件工具。数据不需要完全已知,派生的规则可用于填充缺失值、突出显示异常值或预测新情况下的值。人类的专业知识可以在任何阶段输入,并且可以生成规则的分层系统。规则使用模糊或证据逻辑不确定性演算内置到Fril。它也可以生成c代码,尽管规则更容易理解,并且在Fril中更有效地执行。模糊数据浏览器的增强版与Mathematica相连,可以访问复杂的图形和数学设施。我们着重于一些简单的例子来说明增强的模糊数据浏览器在开发数据建模规则中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信