On modular multiplicative divisor graphs

R. Revathi, R. Rajeswari
{"title":"On modular multiplicative divisor graphs","authors":"R. Revathi, R. Rajeswari","doi":"10.1109/ICPRIME.2013.6496447","DOIUrl":null,"url":null,"abstract":"A graph G (V, E) with /V/ = n is said to have Modular Multiplicative Divisor (MMD) labeling if there exist a bijection f: V(G)→{1, 2, n} and the induced function f*: E(G)→{0, 1, 2, ..., n-1} where f*(uv) = f(u)f(v) mod n such that n divides the sum of all edge labels of G. In this paper we prove that the split graph of cycle C<sub>n</sub>, helm graph H<sub>n</sub>, flower graph f<sub>nX4</sub>, cycle cactus C<sub>4</sub> (n) and extended triplicate graph of a path P<sub>n</sub> (ETG(P<sub>n</sub>)) admits Modular Multiplicative Divisor labeling. AMS Subject Classification: 05C78","PeriodicalId":123210,"journal":{"name":"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2013.6496447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A graph G (V, E) with /V/ = n is said to have Modular Multiplicative Divisor (MMD) labeling if there exist a bijection f: V(G)→{1, 2, n} and the induced function f*: E(G)→{0, 1, 2, ..., n-1} where f*(uv) = f(u)f(v) mod n such that n divides the sum of all edge labels of G. In this paper we prove that the split graph of cycle Cn, helm graph Hn, flower graph fnX4, cycle cactus C4 (n) and extended triplicate graph of a path Pn (ETG(Pn)) admits Modular Multiplicative Divisor labeling. AMS Subject Classification: 05C78
关于模乘因子图
如果存在一个双射f: V(G)→{1,2,n}和引导式函数f*: E(G)→{0,1,2,…,则称图G (V, E)具有模乘因子标记(MMD)。, n-1},其中f*(uv) = f(u)f(v) mod n,使得n除g的所有边标记之和。本文证明了循环Cn的分裂图、盔图Hn、花图fnX4、循环仙人掌C4 (n)和路径Pn (ETG(Pn))的扩展三重图(ETG(Pn))允许模乘除数标记。AMS学科分类:05C78
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信