An efficient speaker-independent automatic speech recognition by simulation of some properties of human auditory perception

H. Hermansky
{"title":"An efficient speaker-independent automatic speech recognition by simulation of some properties of human auditory perception","authors":"H. Hermansky","doi":"10.1109/ICASSP.1987.1169803","DOIUrl":null,"url":null,"abstract":"An auditory model of speech perception, the Perceptually based linear predictive analysis with Root power sum metric (PLP-RPS), is applied as the front-end of an automatic speech recognizer (ASR). The PLP-RPS front-end is compared with standard linear predictive-cepstral metric (LP-CEP) front-end, and with LP-RPS and PLP-CEP front-ends. The two-spectral-peak models are the most efficient in modeling of linguistic information in speech. Consequently, in speaker-independent ASR, high analysis order front-ends are less effective than low-order front-ends. Synthetic speech is used for front-end evaluation. Some of perceptual inconsistencies of standard LP front-ends are alleviated in PLP front-ends. The PLP-RPS front-end is most sensitive to harmonic structure of speech spectrum. Perceptual experiments indicate similar tendencies in human auditory perception.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

An auditory model of speech perception, the Perceptually based linear predictive analysis with Root power sum metric (PLP-RPS), is applied as the front-end of an automatic speech recognizer (ASR). The PLP-RPS front-end is compared with standard linear predictive-cepstral metric (LP-CEP) front-end, and with LP-RPS and PLP-CEP front-ends. The two-spectral-peak models are the most efficient in modeling of linguistic information in speech. Consequently, in speaker-independent ASR, high analysis order front-ends are less effective than low-order front-ends. Synthetic speech is used for front-end evaluation. Some of perceptual inconsistencies of standard LP front-ends are alleviated in PLP front-ends. The PLP-RPS front-end is most sensitive to harmonic structure of speech spectrum. Perceptual experiments indicate similar tendencies in human auditory perception.
通过模拟人类听觉感知的某些特性,实现了一种高效的独立于说话人的自动语音识别
将基于感知的线性预测分析与根幂和度量(PLP-RPS)作为语音自动识别器(ASR)的前端。将PLP-RPS前端与标准线性预测-倒谱度量(LP-CEP)前端、LP-RPS和PLP-CEP前端进行比较。双谱峰模型是最有效的语言信息建模方法。因此,在与说话人无关的ASR中,高分析阶数前端的效率低于低阶阶数前端。前端评价采用合成语音。标准LP前端的一些感知不一致性在PLP前端得到了缓解。PLP-RPS前端对语音频谱的谐波结构最为敏感。知觉实验表明,人类听觉也有类似的倾向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信