Multicollinearity; effects, symptoms, and remedies.

C. Willis, R. Perlack
{"title":"Multicollinearity; effects, symptoms, and remedies.","authors":"C. Willis, R. Perlack","doi":"10.1017/S0163548400001989","DOIUrl":null,"url":null,"abstract":"Multicollinearity is one of several problems confronting researchers using regression analysis. This paper examines the regression model when the assumption of independence among Ute independent variables is violated. The basic properties of the least squares approach are examined, the concept of multicollinearity and its consequences on the least squares estimators are explained. The detection of multicollinearity and alternatives for handling the problem are then discussed. The alternative approaches evaluated are variable deletion, restrictions on the parameters, ridge regression and Bayesian estimation.","PeriodicalId":421915,"journal":{"name":"Journal of the Northeastern Agricultural Economics Council","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Northeastern Agricultural Economics Council","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0163548400001989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Multicollinearity is one of several problems confronting researchers using regression analysis. This paper examines the regression model when the assumption of independence among Ute independent variables is violated. The basic properties of the least squares approach are examined, the concept of multicollinearity and its consequences on the least squares estimators are explained. The detection of multicollinearity and alternatives for handling the problem are then discussed. The alternative approaches evaluated are variable deletion, restrictions on the parameters, ridge regression and Bayesian estimation.
多重共线性;效果、症状和补救措施。
多重共线性是回归分析研究人员面临的几个问题之一。本文研究了在不满足自变量独立假设的情况下的回归模型。研究了最小二乘方法的基本性质,解释了多重共线性的概念及其对最小二乘估计量的影响。然后讨论了多重共线性的检测和处理问题的替代方法。评估的备选方法有变量删除、参数限制、脊回归和贝叶斯估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信