Robust non-linear smoothing for vehicle state estimation

Gabriel Agamennoni, Stewart Worrall, James R. Ward, E. Nebot
{"title":"Robust non-linear smoothing for vehicle state estimation","authors":"Gabriel Agamennoni, Stewart Worrall, James R. Ward, E. Nebot","doi":"10.1109/IVS.2013.6629464","DOIUrl":null,"url":null,"abstract":"This paper presents a robust, non-linear smoothing algorithm and develops the theory behind it. This algorithm is extremely robust to outliers and missing data and handles state-dependent noise. Implementing it is straightforward as it consists mainly of two sub-routines: (a) the Rauch-Tung-Striebel recursions, or Kalman smoother; and (b) a backtracking line search strategy. The computational load grows linearly with the number of data because the algorithm preserves the underlying structure of the problem. Global convergence to a local optimum is guaranteed, under mild assumptions.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a robust, non-linear smoothing algorithm and develops the theory behind it. This algorithm is extremely robust to outliers and missing data and handles state-dependent noise. Implementing it is straightforward as it consists mainly of two sub-routines: (a) the Rauch-Tung-Striebel recursions, or Kalman smoother; and (b) a backtracking line search strategy. The computational load grows linearly with the number of data because the algorithm preserves the underlying structure of the problem. Global convergence to a local optimum is guaranteed, under mild assumptions.
鲁棒非线性平滑车辆状态估计
本文提出了一种鲁棒的非线性平滑算法,并发展了其背后的理论。该算法对异常值和缺失数据具有极强的鲁棒性,并能处理状态相关噪声。实现它很简单,因为它主要由两个子例程组成:(a) Rauch-Tung-Striebel递归,或卡尔曼平滑;(b)回溯线搜索策略。由于算法保留了问题的底层结构,计算负荷随数据数量线性增长。在温和的假设下,保证全局收敛到局部最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信