{"title":"Splitting the relative assembly map, Nil-terms and involutions","authors":"W. Lueck, W. Steimle","doi":"10.2140/akt.2016.1.339","DOIUrl":null,"url":null,"abstract":"We show that the relative Farrell-Jones assembly map from the family of finite subgroups to the family of virtually cyclic subgroups for algebraic K-theory is split injective in the setting where the coefficients are additive categories with group action. This generalizes a result of Bartels for rings as coefficients. We give an explicit description of the relative term. This enables us to show that it vanishes rationally if we take coefficients in a regular ring. Moreover, it is, considered as a Z[Z/2]-module by the involution coming from taking dual modules, an extended module and in particular all its Tate cohomology groups vanish, provided that the infinite virtually cyclic subgroups of type I of G are orientable. The latter condition is for instance satisfied for torsionfree hyperbolic groups.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2016.1.339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
We show that the relative Farrell-Jones assembly map from the family of finite subgroups to the family of virtually cyclic subgroups for algebraic K-theory is split injective in the setting where the coefficients are additive categories with group action. This generalizes a result of Bartels for rings as coefficients. We give an explicit description of the relative term. This enables us to show that it vanishes rationally if we take coefficients in a regular ring. Moreover, it is, considered as a Z[Z/2]-module by the involution coming from taking dual modules, an extended module and in particular all its Tate cohomology groups vanish, provided that the infinite virtually cyclic subgroups of type I of G are orientable. The latter condition is for instance satisfied for torsionfree hyperbolic groups.