Optimizing tensor contractions for embedded devices with racetrack memory scratch-pads

A. Khan, Norman A. Rink, F. Hameed, J. Castrillón
{"title":"Optimizing tensor contractions for embedded devices with racetrack memory scratch-pads","authors":"A. Khan, Norman A. Rink, F. Hameed, J. Castrillón","doi":"10.1145/3316482.3326351","DOIUrl":null,"url":null,"abstract":"Tensor contraction is a fundamental operation in many algorithms with a plethora of applications ranging from quantum chemistry over fluid dynamics and image processing to machine learning. The performance of tensor computations critically depends on the efficient utilization of on-chip memories. In the context of low-power embedded devices, efficient management of the memory space becomes even more crucial, in order to meet energy constraints. This work aims at investigating strategies for performance- and energy-efficient tensor contractions on embedded systems, using racetrack memory (RTM)-based scratch-pad memory (SPM). Compiler optimizations such as the loop access order and data layout transformations paired with architectural optimizations such as prefetching and preshifting are employed to reduce the shifting overhead in RTMs. Experimental results demonstrate that the proposed optimizations improve the SPM performance and energy consumption by 24% and 74% respectively compared to an iso-capacity SRAM.","PeriodicalId":256029,"journal":{"name":"Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316482.3326351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Tensor contraction is a fundamental operation in many algorithms with a plethora of applications ranging from quantum chemistry over fluid dynamics and image processing to machine learning. The performance of tensor computations critically depends on the efficient utilization of on-chip memories. In the context of low-power embedded devices, efficient management of the memory space becomes even more crucial, in order to meet energy constraints. This work aims at investigating strategies for performance- and energy-efficient tensor contractions on embedded systems, using racetrack memory (RTM)-based scratch-pad memory (SPM). Compiler optimizations such as the loop access order and data layout transformations paired with architectural optimizations such as prefetching and preshifting are employed to reduce the shifting overhead in RTMs. Experimental results demonstrate that the proposed optimizations improve the SPM performance and energy consumption by 24% and 74% respectively compared to an iso-capacity SRAM.
优化张量收缩的嵌入式设备与赛道记忆刮擦板
张量收缩是许多算法中的基本操作,从量子化学到流体动力学,从图像处理到机器学习,应用范围广泛。张量计算的性能很大程度上取决于片上存储器的有效利用。在低功耗嵌入式设备的背景下,为了满足能源限制,对内存空间的有效管理变得更加重要。这项工作旨在研究嵌入式系统中性能和节能张量收缩的策略,使用基于赛道存储器(RTM)的刮刮板存储器(SPM)。编译器优化(如循环访问顺序和数据布局转换)与体系结构优化(如预取和预移位)配合使用,以减少rtm中的移位开销。实验结果表明,与等容量SRAM相比,所提出的优化方案使SPM的性能和能耗分别提高了24%和74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信