Machine Learning of SPARQL Templates for Question Answering Over LinkedSpending

Roberto Cocco, M. Atzori, C. Zaniolo
{"title":"Machine Learning of SPARQL Templates for Question Answering Over LinkedSpending","authors":"Roberto Cocco, M. Atzori, C. Zaniolo","doi":"10.1109/WETICE.2019.00041","DOIUrl":null,"url":null,"abstract":"We present a Question Answering system aimed to answer natural language questions over the open RDF spending data provided by LinkedSpeding. We propose an original machine-learning approach to learn generalized SPARQL templates from an existing training set of (NL question, SPARQL query) pairs. In our approach, the generalized SPARQL templates are fed to an instance-based classifier that associates a given user-provided question to an existing pair that is used to answer the user question. We employ an external tagger, delegating the Named-Entity Recognition (NER) task to a service developed for the domain we want to query. The problem is particularly challenging due to the small training set size available, counting only 100 questions/SPARQL queries. We illustrate the results of our new approach using data provided by the Question Answering over Linked Data challenge (QALD-6) task 3, showing that we can provide a correct answer to 14 of the 50 questions of the test set. These results are then compared to existing systems, including our previous system, QA3, where templates were provided by an expert rather than being generated automatically from a training set.","PeriodicalId":116875,"journal":{"name":"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WETICE.2019.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present a Question Answering system aimed to answer natural language questions over the open RDF spending data provided by LinkedSpeding. We propose an original machine-learning approach to learn generalized SPARQL templates from an existing training set of (NL question, SPARQL query) pairs. In our approach, the generalized SPARQL templates are fed to an instance-based classifier that associates a given user-provided question to an existing pair that is used to answer the user question. We employ an external tagger, delegating the Named-Entity Recognition (NER) task to a service developed for the domain we want to query. The problem is particularly challenging due to the small training set size available, counting only 100 questions/SPARQL queries. We illustrate the results of our new approach using data provided by the Question Answering over Linked Data challenge (QALD-6) task 3, showing that we can provide a correct answer to 14 of the 50 questions of the test set. These results are then compared to existing systems, including our previous system, QA3, where templates were provided by an expert rather than being generated automatically from a training set.
基于LinkedSpending的SPARQL问答模板的机器学习
我们提出了一个问答系统,旨在通过LinkedSpeding提供的开放RDF支出数据来回答自然语言问题。我们提出了一种原始的机器学习方法,从现有的训练集(NL问题,SPARQL查询)对中学习通用SPARQL模板。在我们的方法中,将通用SPARQL模板提供给基于实例的分类器,该分类器将给定的用户提供的问题与用于回答用户问题的现有对关联起来。我们使用一个外部标记器,将命名实体识别(NER)任务委托给为我们想要查询的领域开发的服务。由于可用的训练集规模很小,只有100个问题/SPARQL查询,因此这个问题特别具有挑战性。我们使用关联数据问答挑战(QALD-6)任务3提供的数据说明了我们的新方法的结果,表明我们可以为测试集的50个问题中的14个提供正确答案。然后将这些结果与现有系统进行比较,包括我们之前的系统QA3,其中模板是由专家提供的,而不是从训练集中自动生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信