Development of Artificial Neural Network Models for Long-Range Meteorological Parameters Pattern Recognition over the Smaller Scale Geographical Region-District

S. Karmakar, M. Kowar, P. Guhathakurta
{"title":"Development of Artificial Neural Network Models for Long-Range Meteorological Parameters Pattern Recognition over the Smaller Scale Geographical Region-District","authors":"S. Karmakar, M. Kowar, P. Guhathakurta","doi":"10.1109/ICIINFS.2008.4798370","DOIUrl":null,"url":null,"abstract":"Attempt to recognize pattern of meteorological parameters over the smaller scale geographical region (district) artificial neural network models have been developed. 54 years data for 1951-2004 have been used, of which the first 41 years (1951-1991) of data are used for training the network and data for the period 1991-2004 are used independently for validation. We have found that the mean absolute deviation (% of mean) between actual and predicted values of the each model is less than and half of the standard deviation (% of mean) in the independent period (1991-2004). The performances of these models in pattern recognition and prediction have been found to be extremely good. The models are developed and their evaluations have been presented in this paper.","PeriodicalId":429889,"journal":{"name":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2008.4798370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Attempt to recognize pattern of meteorological parameters over the smaller scale geographical region (district) artificial neural network models have been developed. 54 years data for 1951-2004 have been used, of which the first 41 years (1951-1991) of data are used for training the network and data for the period 1991-2004 are used independently for validation. We have found that the mean absolute deviation (% of mean) between actual and predicted values of the each model is less than and half of the standard deviation (% of mean) in the independent period (1991-2004). The performances of these models in pattern recognition and prediction have been found to be extremely good. The models are developed and their evaluations have been presented in this paper.
小尺度地理区域-区域远程气象参数模式识别的人工神经网络模型研究
建立了小尺度地理区域(区)气象参数模式识别的人工神经网络模型。使用了1951-2004年54年的数据,其中前41年(1951-1991年)的数据用于训练网络,1991-2004年的数据单独用于验证。我们发现,在独立时期(1991-2004),每个模型的实际值与预测值之间的平均绝对偏差(占平均值的百分比)小于标准差(占平均值的百分比)的一半。这些模型在模式识别和预测方面的性能非常好。本文建立了这些模型并对其进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信