A Power Conversion System For Large-Scale Reversible SOFC Energy Storage System

Hongsheng Chong, K. Sun, Huan Chen
{"title":"A Power Conversion System For Large-Scale Reversible SOFC Energy Storage System","authors":"Hongsheng Chong, K. Sun, Huan Chen","doi":"10.1109/eGRID52793.2021.9662141","DOIUrl":null,"url":null,"abstract":"As the penetration rate of renewable energy in the utility grid increases, large-scale energy storage system (ESS) will become an essential infrastructure in the grid. Reversible solid oxide fuel cell (RSOFC) technology is a promising solution for large-scale ESS. However, the wide voltage range and low power of single RSOFC stack electrical characteristics have complicated the interface converter design. It is necessary to connect multiple stacks through a power conversion system to integrate the power because a single stack of RSOFC is small. This paper proposes a power conversion system for large-scale RSOFC ESS. The system consists of a cascaded H-bridge (CHB) converter and multiple multiport converters, and they are connected to a common dc bus. Because of the electrical characteristics of RSOFC, a two-stage CLLC based multiport converter topology is employed to achieve high voltage gain and operate at a wide voltage range. The control strategy of the proposed power conversion system is presented. Simulation tests verify the feasibility and effectiveness of the proposed conversion system","PeriodicalId":198321,"journal":{"name":"2021 6th IEEE Workshop on the Electronic Grid (eGRID)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th IEEE Workshop on the Electronic Grid (eGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eGRID52793.2021.9662141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As the penetration rate of renewable energy in the utility grid increases, large-scale energy storage system (ESS) will become an essential infrastructure in the grid. Reversible solid oxide fuel cell (RSOFC) technology is a promising solution for large-scale ESS. However, the wide voltage range and low power of single RSOFC stack electrical characteristics have complicated the interface converter design. It is necessary to connect multiple stacks through a power conversion system to integrate the power because a single stack of RSOFC is small. This paper proposes a power conversion system for large-scale RSOFC ESS. The system consists of a cascaded H-bridge (CHB) converter and multiple multiport converters, and they are connected to a common dc bus. Because of the electrical characteristics of RSOFC, a two-stage CLLC based multiport converter topology is employed to achieve high voltage gain and operate at a wide voltage range. The control strategy of the proposed power conversion system is presented. Simulation tests verify the feasibility and effectiveness of the proposed conversion system
大型可逆SOFC储能系统的功率转换系统
随着可再生能源在公用电网中的渗透率不断提高,大型储能系统将成为电网必不可少的基础设施。可逆固体氧化物燃料电池(RSOFC)技术是一种很有前途的大规模ESS解决方案。然而,单RSOFC堆叠的宽电压范围和低功耗特性使接口变换器的设计变得复杂。由于RSOFC单栈体积小,需要通过功率转换系统将多个栈连接起来进行功率集成。本文提出了一种用于大型RSOFC ESS的功率转换系统。该系统由一个级联h桥(CHB)转换器和多个多端口转换器组成,它们连接在一个公共直流母线上。由于RSOFC的电气特性,采用基于两级CLLC的多端口转换器拓扑结构来实现高电压增益和宽电压范围。给出了所提出的功率转换系统的控制策略。仿真实验验证了该转换系统的可行性和有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信